阿里与上交大提出 LLM 长文本计算新解法:可处理文本长达 1900k 字节

在实际应用大模型的过程中,尤其是处理长文本的上下文信息时,如何高效灵活地调度计算资源成为一个学术界与工业界共同关注的问题。

大语言模型所能容纳的上下文长度直接影响了诸如 ChatGPT 等高级应用与用户交互体验的优劣程度,这给云环境下的 LLM 服务系统提出了严峻挑战:不合理的资源配置不仅可能导致性能瓶颈,还可能造成宝贵的计算资源浪费。

最近,上海交通大学携手阿里研究团队针对这个问题开展了一项研究。

他们提出一个名为 DistAttention 的新颖注意力机制以及一套名为 DistKV-LLM 的分布式 LLM 服务架构,针对长文本语言任务处理中的计算难题提出了新解法,或是对行业的启示。

图片

论文链接:https://arxiv.org/pdf/2401.02669.pdf

长文本处理

LLM云服务是指通过云计算平台提供的,基于大型语言模型的各项服务。各家在LLM云服务之上也下足了马力。目前市场上主要的 LLM 云服务提供商包括但不限于亚马逊的 SageMaker、谷歌的 Cloud AI Platform、微软的 Azure Machine Learning 以及国内的阿里云等。这些平台通常提供了从模型开发到部署的一站式服务,包括计算资源、数据存储、模型训练和部署等。

上个月,一则关于阿里云 OpenSearch-LLM 服务出现故障的消息在技术人员之间传播开来。然而,由于 LLM 云服务这一概念尚未普及至大众认知层面,因此该事件在持续了一天后,便鲜有人再提起。

但这样一个不起眼的故障事件,为我们带来了一个新的思考,基于大型预训练语言模型的在线LLM云服务虽然拥有巨大的超能力,能够为用户提供高效、实时的语言理解和生成能力,但而与之而来的是其对于算力资源的巨大挑战。

拿阿里云 OpenSearch-LLM 智能问答服务为例,公开资料显示,该服务利用了先进的LLM技术,在云端提供强大的自然语言处理功能。由于模型运行所需的计算资源波动较大,特别是在处理长上下文场景时对内存和计算力的需求激增导致的。这种情况下,传统的资源分配策略可能无法有效应对动态变化的需求,从而引发服务不稳定甚至中断。

可以看出即使强大如阿里云也会受制于 LLM 长文本处理的难题。在 Infinite-LLM 的研究中,揭示了这样一个现象:LLM服务的核心运作往往倚赖于多张 GPU 卡的协同工作以完成复杂的文本任务,然而其内在的动态自回归生成机制犹如一道待解的计算难题。

在模型自回归过程中,文本如同一幅逐步渲染的画卷,每一步都根据前序内容迭代地生成新的词语或token,并将它们融合到当前上下文中作为后续生成的基础输入。这种高度动态且连续的过程使得提前精确规划资源分配成为一项不可预知的任务,从而对设计和优化云端 LLM 服务架构构成了实质性挑战。

图片

图注:在采用传统模型并行策略将网络分布在更多GPU上时,这些不随上下文扩展的层会被过度细粒度地分割

打个比方,这就类似于一位顶级厨师运用最先进的智能厨房设备,尝试烹饪一道工序繁复且需灵活调整口味的创新菜品。每当加入一种新鲜食材时,都必须依据现有的风味组合重新调配调料,而且无法预见究竟需要多少种类的食材才能成就这道完美的佳肴。

面对这一亟待解决的问题,业界各方表现出共同的关注与期待。众多研发团队积极投入研究,其中 PagedAttention等方案试图通过改进 GPU 与 CPU 之间的数据交换策略,有效地管理和调度内存资源,以期化解上述困扰LLM服务效率提升的棘手问题。

但这种方法存在几个局限性:

首先,PagedAttention的内存置换范围局限于单一节点内的GPU和CPU内存,因此对极长上下文长度的支持能力受限;

其次,尽管其分页策略旨在最小化内存碎片,但基于请求级别整体交换KV缓存(Key-Value,键值缓存,是一种计算机存储技术),错失了在分布式云环境中实现更为灵活、精细化调度的机会;

此外,对于被置换出的请求所造成的计算中断可能会导致运行任务性能抖动,从而可能违反对云服务至关重要的服务协议(SLAs)。

为了解决业界长期面临的大规模语言模型(LLM)服务中的内存管理与资源分配难题,阿里与上海交大的团队提出了一种名为 DistAttention 的新型注意力算法。

DistAttention将 KV 缓存划分为rBlocks——统一的子块,以便为具有长上下文长度的LLM服务分布式计算和内存管理注意力模块。与主要利用单个节点内的GPU或CPU内存的传统方法不同,DistAttention允许优化分布式数据中心中所有可访问的GPU或CPU内存资源,特别是那些现在利用率不高的资源。这不仅支持更长的上下文长度,还避免了与数据交换或实时迁移过程相关的性能波动。

这就像一位技艺高超的仓储大师,巧妙地将一个不断扩展的、宛如巨大食材仓库的KV缓存分割成大小适中的rBlocks储物箱,使得在面对一道配料繁多、制作复杂的超长菜单(相当于处理长上下文任务)时,每一种“食材”(数据)都能迅速而准确地送达各自的烹饪台(分布式计算节点)。

与那些只在单一厨房(单个GPU或CPU内存节点)内调配食材的传统方法相比,这位“仓储大师”更擅长调动整个美食广场(即数据中心内的所有可用GPU和CPU内存资源),特别是那些闲置或使用率低的空间,使制作超长菜单变得可行且高效,避免了因频繁搬运食材造成的混乱和效率波动。

换言之,DistAttention能够灵活调度跨数据中心的所有可访问GPU或CPU内存资源,特别是那些利用率较低的部分,从而不仅支持更长的上下文处理,还能有效降低由于数据交换或实时迁移带来的性能起伏。

图片

图注:展示了DistKV-LLM如何解决内存碎片化问题

基于此,Infinite-LLM团队进一步开发了集成 DistAttention 技术的 DistKV-LLM 分布式LLM服务引擎。

DistKV-LLM 是一个与 DistAttention 无缝集成的分布式LLM服务引擎。DistKV-LLM 擅长管理KV缓存,有效地在数据中心内的分布式 GPU 和 CPU 之间协调内存使用。当一个LLM服务实例由于 KV 缓存扩展而面临内存不足时,DistKV-LLM主动从负担较轻的实例寻求补充内存。

相比起 DistAttention,DistKV-LLM更像一位精明的协调员,在数据中心内部妥善管理和优化分布式GPU和CPU之间的KV缓存使用。当一个LLM服务实例因为KV缓存扩大而导致内存不足时,它会主动从负载较小的实例借用额外内存。

同时,DistKV-LLM还引入了一套精细的通信协议,促进云端运行的多个LLM服务实例之间进行高效、扩展性强且一致的互动协作。这套协议的核心目标是高效管理和平衡庞大的内存资源,并优先关注数据存储位置就近性和通信效率提升,这对于解决与KV缓存分布存储相关的性能瓶颈至关重要。

这意味着DistKV-LLM能够更好地驾驭大型语言模型在众多GPU和CPU上的并行运算。当LLM服务因需处理海量信息而面临内存压力时,DistKV-LLM能智慧地从负载较轻的区域获取额外内存,并制定一套高级协同规则,确保不同云上LLM实例间能够高效有序、步调一致地完成工作。这一系列设计的关键在于优化内存使用、确保数据快速存取以及减少各部分间的通信成本,即使面临复杂的分布式存储挑战,也能保障系统的整体高性能表现。

DistAttention与DistKV-LLM双管齐下,为分布式环境下LLM服务所面临的资源分配与优化挑战提供了一个切实有效的解决方案。

在具体的实验测评之中,DistAttention与DistKV-LLM在资源管理方面也有卓越的表现。

研究人员在一个包含4个节点和32块GPU的集群上部署了DistKV-LLM系统。每个节点配备了8块NVIDIA A100(80GB)GPU。模型方面则选择了一个具有代表性的模型LLaMA2 进行评估(LLaMA2系列包含了三个不同规模的模型:7B、13B和70B。)。

团队对分布式系统配置进行了广泛测试,涵盖了从2个到32个实例的多种规模。在评测过程中,采用了包含上下文长度最高达1,900K字节的18个代表性基准数据集进行严格检验。结果显示,相较于当前最尖端的技术,系统成功实现了1.03至2.4倍的显著端到端性能飞跃,并且在处理更长上下文信息方面表现出色,支持的上下文长度可扩展至原先的2至19倍之多。同时,在处理标准长度上下文任务场景下,系统的吞吐量也取得了令人瞩目的提升,增长幅度在1.4至5.3倍之间。

图片

结语

随着深度学习技术在自然语言处理领域的广泛应用与深化,端到端性能的研究受到了广泛关注。在应对长文本时,这种性能飞跃的重要性尤为凸显,因为它直接影响了我们能否高效而准确地驾驭海量文本数据,并从中抽丝剥茧般提取出有价值的信息。

DistAttention与DistKV-LLM的结合,通过智能管理内存资源、优化分布式计算策略,成功解决了大规模语言模型服务在长上下文处理中的难题,使系统能够从容应对超长文本序列,同时保持端到端性能提升以及上下文长度扩展能力。未来云端自然语言处理应用有望迎来全新的突破与变革。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/303015.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CHS_02.1.1.2+操作系统的特征

CHS_02.1.1.2操作系统的特征 操作系统的四个特征并发这个特征为什么并发性对于操作系统来说是一个很重要的基本特性资源共享虚拟异步性 操作系统的四个特征 操作系统有并发 共享 虚拟和异部这四个基本的特征 其中 并发和共享是两个最基本的特征 二者互为存在条件 我们会按照这…

pycharm中Pyside2/QtDesigner安装和配置

目录 1、安装pyqt5 2、安装pyqt5-tools 3、在pycharm中配置Qt Designer PyQt5/QtDesigner安装和配置 1、安装pyqt5 pip install pyqt5 安装了 pyqt5 之后,在 python 安装目录下面的 Scripts 文件夹中,有一个 pyuic5.exe 文件,这个可执行文…

大模型上下文长度的超强扩展:从LongLoRA到LongQLoRA

前言 本文一开始是《七月论文审稿GPT第2版:从Meta Nougat、GPT4审稿到Mistral、LongLora Llama》中4.3节的内容,但考虑到 一方面,LongLora的实用性较高二方面,为了把LongLora和LongQLora更好的写清楚,而不至于受篇幅…

【JUC】进程和线程

目录 📢什么是进程?🎡什么是线程?🚀进程和线程的区别?🎢Java 线程和操作系统的线程有啥区别?🎖️JDK21的虚拟线程🎯虚拟线程和平台线程的对比 📢什么是进程? 进程是程序的一次执…

1032: 员工薪水 和 1041: 数列求和2

1032: 员工薪水 某公司规定,销售人员工资由基本工资和销售提成两部分组成,其中基本工资是1500元/月,销售提成规则如下: 销售额小于等于10000元时,按照5%提成; 销售额大于10000元但小于等于50000元时&am…

2024年了,难道还不会使用谷歌DevTools么?

我相信您一定对Chrome浏览器非常熟悉,因为它是前端开发者最亲密的伙伴。我们可以使用它查看网络请求、分析网页性能以及调试最新的JavaScript功能。 除此之外,它还提供了许多功能强大但不常见的功能,这些功能可以大大提高我们的开发效率。 让我们来看看。 1. 重新发送XHR…

Java网络爬虫--概述与原理

目录标题 基本概念与原理爬虫与搜索系统的关系爬虫运行原理爬虫步骤DNS域名解析 爬虫开发本质网络爬虫的分类通用网络爬虫聚集网络爬虫增量式网络爬虫Deep Web爬虫 参考文献 基本概念与原理 爬虫又叫网络蜘蛛,一种运行在互联网上用来获取数据的自动程序。 互联网的…

程序员副业之AI情侣头像(手把手超详细完整全流程)

项目介绍 小黑今天给咱们分享个轻松简单的项目,每天不会超过半小时,就是用AI制作情侣头像,在抖音上变现。听起来是不是很科幻?但实际上效果杠杠的! 最关键的是,收入方面,一单9块9,…

水文模型(科普类)

SWMM 模型概况: SWMM5 系列拥有编辑区域数据的功能,而且能模拟水文、 水力和水质。其核心部分是管道汇流计算模块,提供了恒定流法、运动波法和动力波法三种水动力学 方法。其中动力波法通过求解完整的圣维南方 程组进行计算,能够…

Open3D 点云下采样抽稀(7)

Open3D 点云下采样抽稀(7) 一、算法介绍二、算法实现1.代码 一、算法介绍 点云抽稀在计算机图形学和计算机视觉中有着广泛的应用,其作用包括但不限于以下几点: 数据压缩: 点云抽稀可以有效地减少点云数据量&#xff0…

浏览器使用隧道代理HTTP:洞悉无界信息

在信息爆炸的时代,互联网已经成为获取信息的首选渠道。然而,在某些地区或情况下,访问某些网站可能会受到限制。这时,隧道代理HTTP便成为了一个重要的工具,帮助用户突破限制,洞悉无界信息。 一、隧道代理HT…

【常考简答题】操作系统

目录 1、什么是进程 2、创建进程步骤 3、什么是死锁 4、死锁四个必要条件 5、什么是内存管理 6、内存管理功能 7、进程的三个基本状态转化图 8、操作系统为什么引入线程 9、什么是对换技术,好处是什么 10、DMA直接存取控制工作方式流程图 11、什么是假脱…

泽攸科技完全自主研制的电子束光刻机取得阶段性成果

国产电子束光刻机实现自主可控,是实现我国集成电路产业链自主可控的重要一环。近日,泽攸科技联合松山湖材料实验室开展的全自主电子束光刻机整机的开发与产业化项目取得重大进展,成功研制出电子束光刻系统,实现了电子束光刻机整机…

免费服务器腾讯云_腾讯云免费服务器申请流程(2024更新)

腾讯云免费服务器申请入口 https://curl.qcloud.com/FJhqoVDP 免费服务器可选轻量应用服务器和云服务器CVM,轻量配置可选2核2G3M、2核8G7M和4核8G12M,CVM云服务器可选2核2G3M和2核4G3M配置,腾讯云百科txybk.com分享2024年最新腾讯云免费服务器…

2024年MySQL学习指南(四),探索MySQL数据库,掌握未来数据管理趋势

文章目录 前言9. 约束的概念10. 约束的分类11. 非空约束12. 唯一约束13. 主键约束14. 默认约束15. 外键约束16. 约束的案例练习 前言 接上篇: 2024年MySQL学习指南(一) 2024年MySQL学习指南(二) 2024年MySQL学习指…

解析IT运维领域ITSS和ITIL证书

🌻IT运维领域ITSS和ITIL证书是两种广泛认可的专业认证。 📗ITSS认证证书 ITSS是中国电子技术标准化研究院推出的,👉包含“IT 服务工程师”和“IT 服务经理”的系列培训。有效满足GB/T 28827.1 的符合性评估要求和ITSS服务资质升级…

猫头虎分享已解决Bug || TypeError: Cannot read property ‘match‘ of undefined

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通Golang》…

基于yolov5的PCB板缺陷检测(附有详细步骤通俗易懂版)

PCB板缺陷检测 模型训练 在初学的时候,可能不太了解到底模型训练是个什么流程,到底是什么意思。其实也很简单,就是我们用一个框架(如pytorch,tensorflow等)通过一定的算法如yolov5,对一定的数…

Linux第18步_安装“Ubuntu系统下的C语言编GCC译器”

Ubuntu系统没有提供C/C的编译环境,因此还需要手动安装build-essential软件包,它包含了 GNU 编辑器,GNU 调试器,和其他编译软件所必需的开发库和工具。本节用于重点介绍安装“Ubuntu系统下的C语言编译器GCC”和使用。 1、在安装前…

Flume实时读取本地/目录文件到HDFS

目录 一、准备工作 二、实时读取本地文件到HDFS (一)案例需求 (二)需求分析 (三)实现步骤 三、实时读取目录文件到HDFS (一)案例需求 (二)需求分析 …