Spark---RDD算子(单值类型转换算子)

文章目录

  • 1.RDD算子介绍
  • 2.转换算子
      • 2.1 Value类型
          • 2.1.1 map
          • 2.1.2 mapPartitions
          • 2.1.3 mapPartitionsWithIndex
          • 2.1.4 flatMap
          • 2.1.5 glom
          • 2.1.6 groupBy
          • 2.1.7 filter
          • 2.1.8 sample
          • 2.1.9 distinct
          • 2.1.10 coalesce
          • 2.1.11 repartition
          • 2.1.12 sortBy

1.RDD算子介绍

RDD算子是用于对RDD进行转换(Transformation)或行动(Action)操作的方法或函数。通俗来讲,RDD算子就是RDD中的函数或者方法,根据其功能,RDD算子可以分为两大类:
转换算子(Transformation): 转换算子用于从一个RDD生成一个新的RDD,但是原始RDD保持不变。常见的转换算子包括map、filter、flatMap等,它们通过对RDD的每个元素执行相应的操作来生成新的RDD。
行动算子(Action): 行动算子触发对RDD的实际计算,并返回计算结果或将结果写入外部存储系统。与转换算子不同,行动算子会导致Spark作业的执行。如collect方法。

2.转换算子

RDD 根据数据处理方式的不同将算子整体上分为:
Value 类型:对一个RDD进行操作或行动,生成一个新的RDD。
双 Value 类型:对两个RDD进行操作或行动,生成一个新的RDD。
Key-Value类型:对键值对进行操作,如reduceByKey((x, y),按照key对value进行合并。

2.1 Value类型

2.1.1 map

将处理的数据逐条进行映射转换,这里的转换可以是类型的转换,也可以是值的转换。

函数定义
def map[U: ClassTag](f: T => U): RDD[U]

代码实现:

    //建立与Spark框架的连接
    val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件
    val sparkRdd = new SparkContext(rdd) //读取配置文件

    val mapRdd: RDD[Int] = sparkRdd.makeRDD(List(1, 2, 3, 4))
    //对mapRdd进行转换
    val mapRdd1 = mapRdd.map(num => num * 2)
    //对mapRdd1进行转换
    val mapRdd2 = mapRdd1.map(num => num + "->")

    mapRdd2.collect().foreach(print)

    sparkRdd.stop();//关闭连接

在这里插入图片描述

2.1.2 mapPartitions

将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据。

函数定义
def mapPartitions[U: ClassTag](
f: Iterator[T] => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]

Map 算子是分区内一个数据一个数据的执行,类似于串行操作。而 mapPartitions 算子是以分区为单位进行批处理操作。

mapPartitions在处理数据的时候因为是批处理,相对于map来说处理效率较高,但是如果数据量较大的情况下使用mapPartitions可能会造成内存溢出,因为mapPartitions会将分区内的数据全部加载到内存中。此时更推荐使用map。

2.1.3 mapPartitionsWithIndex

将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据,在处理时同时可以获取当前分区索引。

函数定义
def mapPartitionsWithIndex[U: ClassTag](
f: (Int, Iterator[T]) => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]

实现只保留第二个分区的数据

    val mapRdd: RDD[Int] = sparkRdd.makeRDD(List(1, 2, 3, 4),2)
    val newRdd: RDD[Int] = mapRdd.mapPartitionsWithIndex((index, iterator) => {
      if (index == 1) iterator
      else Nil.iterator
    })
    newRdd.collect().foreach(println)
2.1.4 flatMap

将处理的数据进行扁平化后再进行映射处理,所以算子也称之为扁平映射

       //建立与Spark框架的连接
    val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件
    val sparkRdd = new SparkContext(rdd) //读取配置文件

    val rdd1: RDD[List[Int]] = sparkRdd.makeRDD(List(List(1, 2), List(3, 4)))
    val rdd2: RDD[String] = sparkRdd.makeRDD(List("Hello Java", "Hello Scala"), 2)

    val frdd1: RDD[Int] =rdd1.flatMap(list=>{list})
    val frdd2: RDD[String] =rdd2.flatMap(str=>str.split(" "))

    frdd1.collect().foreach(println)
    frdd2.collect().foreach(println)
    sparkRdd.stop();//关闭连接

在这里插入图片描述

2.1.5 glom

将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变,glom函数的作用就是将一组数据转换为数组。

函数定义
def glom(): RDD[Array[T]]

    /建立与Spark框架的连接
    val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件
    val sparkRdd = new SparkContext(rdd) //读取配置文件

    val rdd1: RDD[Any] = sparkRdd.makeRDD(List(1,2,3,4),2)
    val value: RDD[Array[Any]] = rdd1.glom()
    value.collect().foreach(data=> println(data.mkString(",")))
    sparkRdd.stop();//关闭连接

在这里插入图片描述

2.1.6 groupBy

将数据根据指定的规则进行分组, 分区默认不变,但是数据会被打乱重新组合,我们将这样的操作称之为 shuffle。 极限情况下,数据可能被分在同一个分区中

函数定义
def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]

	    //按照奇偶分组
    val rdd1: RDD[Int] = sparkRdd.makeRDD(List(1,2,3,4),2)
    val value = rdd1.groupBy(num => num % 2)
    value.collect().foreach(println)
    
    //将 List("Hello", "hive", "hbase", "Hadoop")根据单词首写字母进行分组。
    val rdd2: RDD[String] = sparkRdd.makeRDD(List("Hello", "hive", "hbase", "Hadoop"))
    val value1: RDD[(Char, Iterable[String])] = rdd2.groupBy(str => {
      str.charAt(0)
    })
    value1.collect().foreach(println)

在这里插入图片描述

2.1.7 filter

将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出现数据倾斜。

函数定义
def filter(f: T => Boolean): RDD[T]

	//获取偶数
    val dataRDD = sparkRdd.makeRDD(List(
      1, 2, 3, 4
    ), 1)
    val value1 = dataRDD.filter(_ % 2 == 0)
2.1.8 sample

函数定义
def sample(
withReplacement: Boolean,
fraction: Double,
seed: Long = Utils.random.nextLong): RDD[T]

根据指定的规则从数据集中抽取数据

参数具体意义:
1.抽取数据不放回
 withReplacement: Boolean, 该参数表示抽取不放回,此时采用伯努利算法(false)
 fraction: Double,该参数表示抽取的几率,范围在[0,1]之间,0:全不取;1:全取;
 seed: Long = Utils.random.nextLong): RDD[T] 该参数表示随机数种子

2.抽取数据放回
 withReplacement: Boolean, 该参数表示抽取放回,此时采用泊松算法(true)
 fraction: Double,该参数表示重复数据的几率,范围大于等于 0.表示每一个元素被期望抽取到的次数
 seed: Long = Utils.random.nextLong): RDD[T] 该参数表示随机数种子
2.1.9 distinct

将数据集中重复的数据去重

def distinct()(implicit ord: Ordering[T] = null): RDD[T]
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

    val dataRDD = sparkRdd.makeRDD(List(
      1, 2, 3, 4, 1, 2
    ), 6)
    val value = dataRDD.distinct()

在这里插入图片描述

2.1.10 coalesce

根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率当 spark 程序中,存在过多的小任务的时候,可以通过 coalesce 方法,收缩合并分区,减少分区的个数,减小任务调度成本

def coalesce(numPartitions: Int, shuffle: Boolean = false,
partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
(implicit ord: Ordering[T] = null)
: RDD[T]

    //初始Rdd采用6个分区
    val dataRDD = sparkRdd.makeRDD(List(
      1, 2, 3, 4, 1, 2
    ), 6)
    //将分区数量缩减至2个
    val value = dataRDD.coalesce(2)

在coalesce中默认不开启shuffle,在进行分区缩减的时候,数据不会被打散。
在这里插入图片描述

2.1.11 repartition

def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

repartition内部其实执行的是 coalesce 操作,参数 shuffle 的默认值为 true。无论是将分区数多的RDD 转换为分区数少的 RDD,还是将分区数少的 RDD 转换为分区数多的 RDD,repartition操作都可以完成,因为无论如何都会经 shuffle 过程。
在这里插入图片描述

	//将分区数量从2个提升至4个
    val dataRDD = sparkRdd.makeRDD(List(
      1, 2, 3, 4, 1, 2
    ), 2)
    val dataRDD1 = dataRDD.repartition(4)
2.1.12 sortBy

该操作用于排序数据。在排序之前,可以将数据通过 f 函数进行处理,之后按照 f 函数处理的结果进行排序,默认为升序排列。排序后新产生的 RDD 的分区数与原 RDD 的分区数一致。中间存在 shuffle 的过程

def sortBy[K](
f: (T) => K, 该参数表述用于处理的函数
ascending: Boolean = true, 该参数表示是否升序排序
numPartitions: Int = this.partitions.length) 该参数表示设置分区数量
(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]

    val dataRDD = sparkRdd.makeRDD(List(
      1, 2, 3, 4, 1, 2
    ), 2)
    //按照初始数据降序排列
    val dataRDD1 = dataRDD.sortBy(num => num, false, 4)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/302150.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ElasticSearch 集群搭建与状态监控cerebro

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。为了解决存储能力上上限问题就可以用到集群部署。 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点单点故障问题:将分片数据在不同节点备份 (r…

校园跑腿小程序(前后端已完成)可做项目,可当毕设,支持二创

此小程序为我单独在小程序上运行的结果,图片信息、列表信息等没有出现是因为服务器到期了,资源被释放了,无法显示。但是后端是已经实现了的,有兴趣的同学可以私聊我。 效果预览

数说故事×凤凰网丨2023年度重磅事件社媒影响力盘点

回首2023年的社媒热点,杭州亚运会引发了全民热聊,熊猫丫丫回国之路接力守护,品牌联名的酱香拿铁让人半醒半醉,“美拉德”的穿搭风伴随着西伯利亚的冷空气终是吹走了“多巴胺”的明丽,当然世界还有另一面,俄…

用友GRP-U8 ufgovbank.class XXE漏洞

产品简介 用友GRP-U8R10内控管理软性软性是用友公司专注于电子政务事业,基于云计算技术所推出的新一代产品,是我国行政事业财务领域专业的财务管理软件。 漏洞描述 用友GRP-U8R10 ufgovbank.class 存在XML实体注入漏洞,攻击者可利用xxe漏洞…

(aiohttp-asyncio-FFmpeg-Docker-SRS)实现异步摄像头转码服务器

1. 背景介绍 在先前的博客文章中,我们已经搭建了一个基于SRS的流媒体服务器。现在,我们希望通过Web接口来控制这个服务器的行为,特别是对于正在进行的 RTSP 转码任务的管理。这将使我们能够在不停止整个服务器的情况下,动态地启动…

【leetcode】力扣算法之旋转图像【难度中等】

题目描述 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 用例 输入: matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&…

为什么广西桉木建筑模板被广泛用于中高层建筑施工?

在中高层建筑施工中,选择合适的建筑模板至关重要。广西桉木建筑模板因其独特的性能优势,在市场上占据了重要地位。专业生产厂家如能强优品木业,更是以其优质的桉木模板,成为广西地区的佼佼者。 高强度和稳定性 桉木以其高密度和优…

apk反编译修改教程系列---修改apk包名等信息 让一个应用拥有无限分身 手机电脑同步演示【九】

往期教程: apk反编译修改教程系列-----修改apk应用名称 任意修改名称 签名【一】 apk反编译修改教程系列-----任意修改apk版本号 版本名 防止自动更新【二】 apk反编译修改教程系列-----修改apk中的图片 任意更换apk桌面图片【三】 apk反编译修改教程系列---简单…

80套经典精美网页设计模板html模板打包分享/国内外优秀网页模板/html5网页静态模板

我收集的80套经典网页设计模板html模板,Bootstrap扁平化网站模版,并且无密打包分享。里面还有国内外优秀网页模板,可以直接简单的修改就可以作为自己的主页。内容是大气漂亮的htmlcss网站模板。 不同种类,不同行业、不同风格的网…

在做题中学习(45):最大连续1的个数III

1004. 最大连续1的个数 III - 力扣&#xff08;LeetCode&#xff09; 解法&#xff1a;同向双指针————“滑动窗口” 思路&#xff1a;因为要返回数组中连续的数&#xff0c;就相当于一个子数组&#xff0c;而要的是一个可以翻转 < k个0的子数组使它可以变为全1的子数…

springboot git配置文件自动刷新失败问题排查

http://{ip}:{port}/refresh 说明&#xff1a;springBoot版本是1.5.9&#xff0c;接口路径与2.x&#xff0c;不同 路径区别&#xff1a;/refresh VS /actuator/refresh 用postman调用refresh接口刷新git配置&#xff0c;报错如下&#xff0c;没有权限 在服务本地启动&#…

数字化妆,销量爆灯:美妆个护行业的直播营销新姿势

“ 直播电商走进全域营销驱动增长的时代 ” 文&#xff5c;欣桐&凯丰 编辑 | 靳淇 出品&#xff5c;极新 过去几年&#xff0c;美妆个护是直播电商平台中冲锋最猛的行业之一。李佳琦、薇雅等头部主播的“疯狂带货”下&#xff0c;美妆个护品牌脱颖而出&#xff0c;花…

听GPT 讲Rust源代码--compiler(38)

File: rust/compiler/rustc_parse/src/parser/expr.rs 在Rust的源代码中&#xff0c;rust/compiler/rustc_parse/src/parser/expr.rs这个文件扮演了解析表达式的角色。表达式是Rust中的一种语法结构&#xff0c;用于表示程序中的计算、操作和值。 该文件定义了一个名为ExprPa…

CVE-2023-36025 Windows SmartScreen 安全功能绕过漏洞

CVE-2023-36025是微软于11月补丁日发布的安全更新中修复Windows SmartScreen安全功能绕过漏洞。攻击者可以通过诱导用户单击特制的URL来利用该漏洞&#xff0c;对目标系统进行攻击。成功利用该漏洞的攻击者能够绕过Windows Defender SmartScreen检查及其相关提示。该漏洞的攻击…

视频监控系统EasyCVR平台可视化模式设备列表搜索及八分屏播放模式定制开发

国标GB28181协议EasyCVR安防平台可以提供实时远程视频监控、视频录像、录像回放与存储、告警、语音对讲、云台控制、平台级联、磁盘阵列存储、视频集中存储、云存储等丰富的视频能力&#xff0c;平台支持7*24小时实时高清视频监控&#xff0c;能同时播放多路监控视频流&#xf…

DC-DC升压/降压 隔离电源解决方案PCB和原理图

DC-DC隔离电源模块是一种基于变换原理而设计的模块,可以将一种电压转变为另一种电压,同时实现电气信号的隔离和滤波作用。其工作原理基于电感和电容的原理,一般由输入电路、输出电路、开关电路和控制电路四部分组成。 DC-DC电源模块的众多优点是大家众所周知的&#xff0c;DC-…

高效构建Java应用:Maven入门和进阶(二)

高效构建Java应用&#xff1a;Maven入门和进阶&#xff08;二&#xff09; 二.基于IDEA的Maven的工程创建2.1 梳理Maven工程GAVP属性2.2 Idea构建Maven JavaSE工程2.3 Idea构建Maven JavaEE工程2.4 Maven工程项目结构说明 二.基于IDEA的Maven的工程创建 2.1 梳理Maven工程GAVP…

最实用!2023年7款免费App设计工具,让你的应用界面更上一层楼

即时设计 即时设计是一种高效的在线原型设计工具&#xff0c;支持移动终端、网络终端和网页终端的产品原型设计。无需下载&#xff0c;可通过浏览器操作&#xff0c;支持软件下载&#xff0c;随时随地设计和模拟。学习难度低&#xff0c;强大的材料库和简单的设计界面可以帮助…

STM32 基础知识(探索者开发板)--146讲 IIC

IIC特点&#xff1a; 同步串行半双工通信总线 IIC有一个弱上拉电阻&#xff0c;在主机和从机都没有传输数据下拉时&#xff0c;总线会自动上拉 SCL在低电平期间&#xff0c;改变SDA的值来上传数据&#xff0c;方便SCL电平上升时进行数据读取 SCL在高电平期间&#xff0c;不能…

微信getAccessToken限制问题

微信getAccessToken限制问题 错误代码&#xff1a;45009&#xff0c;错误信息&#xff1a;调用分钟频率受限 https://developers.weixin.qq.com/miniprogram/dev/OpenApiDoc/mp-access-token/getAccessToken.html GET https://api.weixin.qq.com/cgi-bin/token 接口重复访问会…