pyfolio工具结合backtrader分析量化策略组合,附源码+问题分析

pyfolio可以分析backtrader的策略,并生成一系列好看的图表,但是由于pyfolio直接install的稳定版有缺陷,开发版也存在诸多问题,使用的依赖版本都偏低,试用了一下之后还是更推荐quantstats。

1、安装依赖

pip install pyfolio
# 直接install是稳定版会报各式各样的错误,要用git拉开发版
pip install git+https://github.com/quantopian/pyfolio

但是git拉也可能报各种http代理等问题,可以使用如下方法解决:

  1. 克隆 GitHub 仓库: 打开命令行或终端,然后使用以下命令将 pyfolio 仓库克隆到本地:

    bashCopy code

    如果git clone https://github.com/quantopian/pyfolio.git报错,可以用下面格式
    git clone git@github.com:quantopian/pyfolio.git

    这将在当前目录下创建一个名为 “pyfolio” 的文件夹,并将仓库的所有代码下载到其中。

  2. 切换到仓库目录: 使用以下命令进入 pyfolio 文件夹:

    bashCopy code

    cd pyfolio

  3. 安装: 在 pyfolio 文件夹中执行以下命令,安装开发版本的代码:

    bashCopy code

    pip install -e .

    -e 选项表示以 “editable” 模式安装,这意味着你对代码的修改会立即反映在安装的库中。这对于开发和测试非常有用。

pyfolio策略源码

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
'''
@Author:Airyv
@Project:test 
@File:quantstats_demo.py
@Date:2024/1/1 21:45 
@desc:
'''

from datetime import datetime

import backtrader as bt  # 升级到最新版
import matplotlib.pyplot as plt  # 由于 Backtrader 的问题,此处要求 pip install matplotlib==3.2.2
import akshare as ak  # 升级到最新版
import pandas as pd
import quantstats as qs
import pyfolio as pf

plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False

# 利用 AKShare 获取股票的后复权数据,这里只获取前 6 列
stock_hfq_df = ak.stock_zh_a_hist(symbol="600028", adjust="hfq").iloc[:, :6]
# 处理字段命名,以符合 Backtrader 的要求
stock_hfq_df.columns = [
    'date',
    'open',
    'close',
    'high',
    'low',
    'volume',
]
# 把 date 作为日期索引,以符合 Backtrader 的要求
stock_hfq_df.index = pd.to_datetime(stock_hfq_df['date'])


class MyStrategy(bt.Strategy):
    """
    主策略程序
    """
    params = (("maperiod", 5),)  # 全局设定交易策略的参数

    def __init__(self):
        """
        初始化函数
        """
        self.data_close = self.datas[0].close  # 指定价格序列
        # 初始化交易指令、买卖价格和手续费
        self.order = None
        self.buy_price = None
        self.buy_comm = None
        # 添加移动均线指标
        self.sma = bt.indicators.SimpleMovingAverage(
            self.datas[0], period=self.params.maperiod
        )

    def next(self):
        """
        执行逻辑
        """
        if self.order:  # 检查是否有指令等待执行,
            return
        # 检查是否持仓
        if not self.position:  # 没有持仓
            if self.data_close[0] > self.sma[0]:  # 执行买入条件判断:收盘价格上涨突破20日均线
                self.order = self.buy(size=100)  # 执行买入
        else:
            if self.data_close[0] < self.sma[0]:  # 执行卖出条件判断:收盘价格跌破20日均线
                self.order = self.sell(size=100)  # 执行卖出
        # 更新指令状态
        if self.order:
            self.buy_price = self.data_close[0]
            self.buy_comm = self.broker.getcommissioninfo(self.data).getcommission(self.buy_price, 100)
            self.order = None  # 在这里将订单设置为None,表示没有正在执行的订单
        else:
            self.buy_price = None
            self.buy_comm = None


cerebro = bt.Cerebro()  # 初始化回测系统
start_date = datetime(2010, 1, 3)  # 回测开始时间
end_date = datetime(2023, 6, 16)  # 回测结束时间
data = bt.feeds.PandasData(dataname=stock_hfq_df, fromdate=start_date, todate=end_date)  # 加载数据
# data=bt.feeds.PandasData(dataname=df,fromdate=start_date,todate=end_date)#加银数据
cerebro.adddata(data)  # 将数据传入回测系统
cerebro.addstrategy(MyStrategy)  # 将交易策略加载到回测系统中
# 加入pyfolio分析者
cerebro.addanalyzer(bt.analyzers.PyFolio, _name='pyfolio')
start_cash = 1000000
cerebro.broker.setcash(start_cash)  # 设置初始资本为 100000
cerebro.broker.setcommission(commission=0.002)  # 设置交易手续费为 0.2%
result = cerebro.run()  # 运行回测系统

port_value = cerebro.broker.getvalue()  # 获取回测结束后的总资金
pnl = port_value - start_cash  # 盈亏统计

print(f"初始资金: {start_cash}\n回测期间:{start_date.strftime('%Y%m%d')}:{end_date.strftime('%Y%m%d')}")
print(f"总资金: {round(port_value, 2)}")
print(f"净收益: {round(pnl, 2)}")

# cerebro.plot(style='candlestick')  # 画图

cerebro.broker.getvalue()

strat = result[0]
pyfoliozer = strat.analyzers.getbyname('pyfolio')

returns, positions, transactions, gross_lev = pyfoliozer.get_pf_items()
%matplotlib inline
pf.create_full_tear_sheet(
    returns,
    positions=positions,
    transactions=transactions,
    live_start_date='2023-01-03')


# returns, positions, transactions, gross_lev = pyfoliozer.get_pf_items()
# returns
# positions
# transactions
# gross_lev

# pf.create_full_tear_sheet(returns)
# pf.create_full_tear_sheet(
#     returns,
#     positions=positions,
#     transactions=transactions,
#     live_start_date='2010-01-03',
#     round_trips=True)
# pf.create_full_tear_sheet(returns,live_start_date='2010-01-03')
# cerebro.plot()

错误解决

解决后可能报错:

  1. AttributeError: 'Series' object has no attribute 'iteritems'
    solution:

    For anyone else who has the same error pls edit the plotting.py file in ur site packages folder from iteritems() to items()

    意思是进入plotting.py文件(可以用everything搜索)中全局搜索iteritems(),替换为items()即可

  2. AttributeError: module 'pandas' has no attribute 'Float64Index'

    原因是pandas版本太高了(2.0.1),安装低版本:

pip uninstall pandas
pip install pandas==1.5.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
  1. File "...\pyfolio\timeseries.py", line 896, in get_max_drawdown_underwater

    将timeseries.py893行改为:

# valley = np.argmin(underwater)  # end of the period
valley = underwater.idxmin()
  1. File "\pyfolio\round_trips.py", line 133, in _groupby_consecutive grouped_price = (t.groupby(('block_dir',KeyError: ('block_dir', 'block_time')

    修改round_trips.py第133行

        # grouped_price = (t.groupby(('block_dir',
        #                            'block_time'))
        #                   .apply(vwap))
        grouped_price = (t.groupby(['block_dir','block_time'])
                          .apply(vwap))
        grouped_price.name = 'price'
        grouped_rest = t.groupby(['block_dir', 'block_time']).agg({
            'amount': 'sum',
            'symbol': 'first',
            'dt': 'first'})
  1. File "...\pyfolio\round_trips.py", line 77, in agg_all_long_short stats_all = (round_trips pandas.errors.SpecificationError: nested renamer is not supported

    改round_trips.py第77行

    stats_all = (round_trips
                 .assign(ones=1)
                 .groupby('ones')[col]
                 .agg(list(stats_dict.items()))
                 .T
                 .rename(columns={1.0: 'All trades'}))
    stats_long_short = (round_trips
                        .groupby('long')[col]
                        .agg(list(stats_dict.items()))
                        .T
                        .rename(columns={False: 'Short trades',
                                      True: 'Long trades'}))
  1. File "...\pyfolio\round_trips.py", line 393, in gen_round_trip_stats round_trips.groupby('symbol')['returns'].agg(RETURN_STATS).T pandas.errors.SpecificationError: nested renamer is not supported

    393行修改:

    stats['symbols'] = \
        round_trips.groupby('symbol')['returns'].agg(list(RETURN_STATS.items())).T

  1. ValueError: The number of FixedLocator locations (16), usually from a call to set_ticks, does not match the number of labels (3).

    注释掉tears.py文件的871行

画图运行

在Jupter notebook中运行,不建议直接console中运行,结果如图:


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/298614.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【STM32】STM32学习笔记-TIM输出比较(15)

00. 目录 文章目录 00. 目录01. 输出比较简介02. PWM简介03. 输出比较通道(高级)04. 输出比较通道(通用)05. 输出比较模式06. PWM基本结构07. PWM参数计算08. 舵机简介09. 舵机硬件电路10. 直流电机及驱动简介11. 直流电机硬件电路12. 附录 01. 输出比较简介 OC&#xff08;Ou…

ASP.NET可视化流程设计器源码

源码介绍: ASP.NET可视化流程设计器源码已应用于众多大型企事业单位。拥有全浏览器兼容的可视化流程设计器、表单设计器、基于角色的权限管理等系统开发必须功能&#xff0c;大大为您节省开发时间&#xff0c;是您开发OA.CRM、HR等企事业各种应用管理系统和工作流系统的最佳基…

Redis高级特性和应用(慢查询、Pipeline、事务、Lua)

Redis的慢查询 许多存储系统(例如 MySQL)提供慢查询日志帮助开发和运维人员定位系统存在的慢操作。所谓慢查询日志就是系统在命令执行前后计算每条命令的执行时间,当超过预设阀值,就将这条命令的相关信息(例如:发生时间,耗时,命令的详细信息)记录下来,Redis也提供了类似…

【开源】基于JAVA语言的服装店库存管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 角色管理模块2.3 服装档案模块2.4 服装入库模块2.5 服装出库模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 角色表3.2.2 服装档案表3.2.3 服装入库表3.2.4 服装出库表 四、系统展示五、核心代码5.…

梦想家内容管理系统(Dreamer CMS)跨站请求伪造漏洞

梦想家内容管理系统&#xff08;Dreamer CMS&#xff09;跨站请求伪造漏洞 目标:GitHub - iteachyou-wjn/dreamer_cms: Dreamer CMS 梦想家内容发布系统采用流行的SpringBoot搭建&#xff0c;支持静态化、标签化建站。不需要专业的后台开发技能&#xff0c;会HTML就能建站&…

java数据结构与算法刷题-----LeetCode63. 不同路径 II

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 很多人觉得动态规划很难&#xff0c;但它就是固定套路而已。其实动态规划只…

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -后端鉴权拦截器实现

锋哥原创的uniapp微信小程序投票系统实战&#xff1a; uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…

【GitHub】-design-pattern-extend(设计模式扩展)

写在前面 偶然间看到一篇文章 《Java 中保持扩展性的几种套路和实现》&#xff0c;写的不错&#xff0c;但是类图画的差了点儿意思。于是&#xff0c;自己动手画了画&#xff0c;对其中的内容作了一些调整&#xff0c;对包做了进一步划分&#xff0c;便于理解消化。以下是对Git…

C++ Qt开发:Charts与数据库组件联动

Qt 是一个跨平台C图形界面开发库&#xff0c;利用Qt可以快速开发跨平台窗体应用程序&#xff0c;在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置&#xff0c;实现图形化开发极大的方便了开发效率&#xff0c;本章将重点介绍Charts组件与QSql数据库组件的常用方法及灵活…

【STM32】STM32学习笔记-定时器定时中断 定时器外部时钟(14)

00. 目录 文章目录 00. 目录01. 定时器中断相关API1.1 TIM_InternalClockConfig1.2 TIM_TimeBaseInit1.3 TIM_TimeBaseInitTypeDef1.4 TIM_ClearFlag1.5 TIM_ITConfig1.6 TIM_Cmd1.7 中断服务函数1.8 TIM_ETRClockMode2Config 02. 定时器定时中断接线图03. 定时器定时中断示例0…

嵌入式项目——平衡小车(1)

焊接 驱动板需要焊接的如上图。 陀螺仪8pin排母电机两路排线插口。(个别同学需要焊接)两个电池仓,注意电池仓分正反。 安装 底部电池板 4个 双通尼龙柱M3*224个 尼龙螺钉M3*6电机驱动板

个人笔记:分布式大数据技术原理(二)构建在 Hadoop 框架之上的 Hive 与 Impala

有了 MapReduce&#xff0c;Tez 和 Spark 之后&#xff0c;程序员发现&#xff0c;MapReduce 的程序写起来真麻烦。他们希望简化这个过程。这就好比你有了汇编语言&#xff0c;虽然你几乎什么都能干了&#xff0c;但是你还是觉得繁琐。你希望有个更高层更抽象的语言层来描述算法…

Java数组:一维数组、二维数组、Arrays

文章目录 1、一维数组1.1 数组概念1.2 数组的声明1.3 数组的静态初始化1.4 数组的动态初始化1.5 地址值1.6 数组元素访问1.7 索引1.8 数组的遍历1.9 数组两种初始化方式的区别 2、二维数组2.1 二维数组的声明2.2 二维数组的静态初始化2.3 二维数组的动态初始化2.4 二维数组的遍…

扩散模型: Diffusion Model概念讲解

Diffusion Model 课件视频前向扩散过程 在原始图像中逐步添加高斯分布随机噪声,直到最后得到完全噪声的图像。 反向降噪过程 逐步去除噪声图中的噪声,得到最后原图。 根据噪声图和时间步得到预测的噪声,然后噪声图减去噪声得到原始图 噪声预测的标签来自于前向扩散过程中添加…

TSINGSEE青犀智能分析网关V4在智慧园区车辆违停检测场景中的应用

一、背景与需求 园区作为企业办公、生产制造的重要场所&#xff0c;主要道路车辆违停等违规行为会对园区的安全造成隐患&#xff0c;并且在上下班高峰期内&#xff0c;由于发现不及时&#xff0c;车辆违停行为会造成出入口拥堵现象&#xff0c;这也成为园区管理的棘手问题。为了…

胡圆圆的暑期实习经验分享

背景 实验室一般是在研究生二年级的时候会放实习&#xff0c;在以后的日子就是自己完成毕业工作要求&#xff0c;基本上不再涉及实验室的活了&#xff0c;目前是一月份也是开始准备暑期实习的好时间。实验室每年这个时候都会有学长学姐组织暑期实习经验分享&#xff0c;本着不…

uniappVue3版本中组件生命周期和页面生命周期的详细介绍

一、什么是生命周期&#xff1f; 生命周期有多重叫法&#xff0c;有叫生命周期函数的&#xff0c;也有叫生命周期钩子的&#xff0c;还有钩子函数的&#xff0c;其实都是代表&#xff0c;在 Vue 实例创建、更新和销毁的不同阶段触发的一组钩子函数&#xff0c;这些生命周期函数…

STM32F407-14.3.10-表73具有有断路功能的互补通道OCx和OCxN的输出控制位-00x00-11x11(总结)

如上表73所示&#xff0c;主输出使能&#xff08;MOE0&#xff09;的8种OCx与OCxN的输出状态及波形图&#xff0c;已经单独整理输出8篇文章&#xff0c;方便需要时单独回查。 根据表73可得以下结论 1、从00x00~01x00的前5种状态的OCx与OCxN的引脚电平全由GPIO端口的上下拉决定…

Java序列化篇----第一篇

系列文章目录 文章目录 系列文章目录前言一、什么是java序列化,如何实现java序列化?二、保存(持久化)对象及其状态到内存或者磁盘三、序列化对象以字节数组保持-静态成员不保存四、序列化用户远程对象传输前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,…

1389 蓝桥杯 二分查找数组元素 简单

1389 蓝桥杯 二分查找数组元素 简单 //C风格解法1&#xff0c;lower_bound(),通过率100% //利用二分查找的方法在有序的数组中查找&#xff0c;左闭右开 #include <bits/stdc.h> using namespace std;int main(){int data[200];for(int i 0 ; i < 200 ; i) data[i] …