excel统计分析——两因素有重复方差分析

参考资料:生物统计学

        无重复观测值的两因素方差分析只能研究两个因素的主效应,不能考察因素间的交互作用,只有在确定因素间不存在交互作用时才能进行无重复观测值的试验和分析。为了准确估计因素的主效应、交互作用和随机误差,每个水平组合都应设置重复。

        设A、B两因素分别有a、b个水平,共有ab个水平组合,每个水平组合有n次重复,则共有abn个观测值。线性模型可以表示为:x_{ijk}=\mu+\alpha_i+\beta_j+(\alpha\beta)_{ij}+\varepsilon _{ijk}

其中,i=1,2,...,a;j=1,2,...,b;k=1,2,...,n;μ为总平均数;\alpha_iA_i的效应;\beta_jB_j的效\sum_{k=1}^{n}(\alpha \beta)_{ij}=\sum_{i=1}^{a}(\alpha \beta)_{ij}=\sum_{j=1}^{b}(\alpha \beta)_{ij}=\sum_{i=1}^{a}\sum_{j=1}^{b}(\alpha \beta)_{ij}=0应;(\alpha \beta)_{ij}A_iB_j的互作效应;\varepsilon _{ijk}为随机误差,相互独立且都服从N(0,\sigma ^2)

         若\mu_{i.}\mu_{.j}\mu_{ij}分别为A_iB_jA_iB_j对应的平均数,则:

\alpha_i=\mu_{i.}-\mu

\beta_j=\mu_{j.}-\mu

(\alpha \beta)_{ij}=\mu_{ij}-\mu_{i.}-\mu_{.j}+\mu=\mu_{ij}-\alpha_i-\beta_j-\mu

\sum_{i=1}^{a}\alpha_i=\sum_{j=1}^{b}\beta_j=0

\sum_{i=1}^{a}\sum_{j=1}^{b}(\alpha \beta)_{ij}=0

1、平方和分解

        与无重复观测值的两因素数据相比,有重复观测值的两因素数据的平方和与自由度的分解多出两个因素的互作效应项,即SS_T=SS_A+SS_B+SS_{AB}+SS_e

 SS_T=\sum_{i=1}^{a}\sum_{j=1}^{b}\sum_{k=1}^{n}(x_{ijk}-\bar{x_{..}})^2

=\sum_{i=1}^{a}\sum_{j=1}^{b}\sum_{k=1}^{n}[(\bar{x_{i.}}-\bar{x_{..}})+(\bar{x_{.j}}-\bar{x_{..}})+(\bar{x_{ij}}-\bar{x_{i.}}-\bar{x_{.j}}+\bar{x_{..}}))+(x_{ijk}-\bar{x_{ij}})]^2

=bn\sum_{i=1}^{a}(\bar{x_{i.}}-\bar{x_{..}})^2+an\sum_{j=1}^{b}(\bar{x_{.j}}-\bar{x_{..}})^2+n\sum_{i=1}^{a}\sum_{j=1}^{b}(\bar{x_{ij}}-\bar{x_{i.}}-\bar{x_{.j}}+\bar{x_{..}})^2+\sum_{i=1}^{a}\sum_{j=1}^{b}\sum_{k=1}^{n}(x_{ijk}-\bar{x_{ij}})^2

所以:

SS_T=\sum_{i=1}^{a}\sum_{j=1}^{b}\sum_{k=1}^{n}(x_{ijk}-\bar{x_{..}})^2=\sum_{i=1}^{a}\sum_{j=1}^{b}\sum_{k=1}^{n}x_{ijk}^2-C

SS_A=bn\sum_{i=1}^{a}(\bar{x_{i.}}-\bar{x_{..}})^2=\frac{1}{bn}\sum_{i=1}^{a}T_{i.}^2-C

SS_B=an\sum_{j=1}^{b}(\bar{x_{.j}}-\bar{x_{..}})^2=\frac{1}{an}\sum_{j=1}^{b}T_{.j}^{2}-C

SS_{AB}=n\sum_{i=1}^{a}\sum_{j=1}^{b}(\bar{x_{ij}}-\bar{x_{i.}}-\bar{x_{.j}}+\bar{x_{..}})^2=\frac{1}{n}\sum_{j=1}^{a}\sum_{j=1}^{b}(\sum_{k=1}^{n}x_{ijk})^2-SS_A-SS_B-C

SS_e=\sum_{i=1}^{a}\sum_{j=1}^{b}\sum_{k=1}^{n}(x_{ijk}-\bar{x_{ij}})^2=SS_T-SS_A-SS_B-SS_{AB}

C=T^2/(abn)

2、自由度分解

df_T=abn-1

df_A=a-1

df_B=b-1

df_{AB}=(a-1)(b-1)

df_e=df_T-df_A-df_B-df_{AB}=ab(n-1)

3、计算均方值

各项的均方为平方和与相应的自由度的比值,这里不再展示。

4、F统计量计算

在计算F统计量之前,需要解释下固定效应和随机效应。

如果因素是认为可控的,如温度、时间、浓度等,称为固定因素,其效应为固定效应。

如果因素是不可控的,如土壤、气候等,称为随机因素,产生的是各水平之间的变异性,效应是随机效应。

单因素和无重复观测值的两因素数据因不涉及互作问题,效应均方只比误差均方多出一个效应项或方差项,计算时均以误差均方为分母。有重复观测值的两因素数据不同模型各项均方的数学期望和F统计量计算如下图:

excel公式法计算如下:

excel数据分析工具操作如下:

1、选择数据分析工具中,“方差分析:可重复双因素分析”

2、弹出对话框中,带标题选择数据区域,并在“每一样本的行数”处填写重复数,本例为3。

3、分析结果如下:

此法只能进行对固定模型的方差分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/298388.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

设计模式之原型模式【创造者模式】

学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。各位小伙伴,如果您: 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持,想组团高效学习… 想写博客但无从下手,急需…

第121场双周赛题解:揭秘算法竞赛中的数位挑战与解题策略

需要多掌握解题套路 比赛地址 100157. 大于等于顺序前缀和的最小缺失整数 class Solution:def missingInteger(self, nums: List[int]) -> int:# Step 1: Find the longest consecutive prefixi 0 for i in range(1, len(nums)):if nums[i] ! nums[i - 1] 1:breakelse:…

Zookeeper三节点搭建

一、安装前准备 安装JDK(之前已经安装了) 拷贝apache-zookeeper-3.5.7-bin.tar.gz安装包到Linux系统下 解压到指定目录 在/opt/module/zookeeper-3.5.7/这个目录下创建zkData,在/opt/module/zookeeper-3.5.7/zkData目录下创建一个myid的…

第 121 场 LeetCode 双周赛题解

A 大于等于顺序前缀和的最小缺失整数 模拟&#xff1a;先求最长顺序前缀的和 s s s &#xff0c;然后从 s s s 开始找没有出现在 n u m s nums nums 中的最小整数 class Solution { public:int missingInteger(vector<int> &nums) {unordered_set<int> vis(…

MySQL数据管理(二)

DML语言 DML &#xff08;数据操作语&#xff09;&#xff1a;用于操作数据库对象中所包含的数据 DML包括&#xff1a; INSERT&#xff08;添加数据语句&#xff09;UPDATE&#xff08;更新数据语句&#xff09;DELETE&#xff08;删除数据语句&#xff09; 一、添加数据 …

Matlab三维绘图

绘制三维图plot3 t0:pi/50:10*pi; xsin(t); ycos(t); zt; plot3(x,y,z); 产生栅格数据点meshgrid 这个接口在绘制三维图像里面相当重要&#xff0c;很多时候要将向量变成矩阵才能绘制三维图。 x0:0.5:5; y0:1:10; [X,Y]meshgrid(x,y); plot(X,Y,o); x和y是向量&#xff0c;…

qt三大控件

1.QListWidget控件 先在ui界面将 QListWidget拖出来竖直对齐 再去代码中实现文本插入 两种插入方式 方法1 //listWidget使用 有左右中间对齐需求QListWidgetItem * itemnew QListWidgetItem("床前明月光"); // //上面只是独立的一句话,没有关联起来ui-&g…

Android AAudio

文章目录 基本概念启用流程基本流程HAL层对接数据流计时模型调试 基本概念 AAudio 是 Android 8.0 版本中引入的一种音频 API。 AAudio 提供了一个低延迟数据路径。在 EXCLUSIVE 模式下&#xff0c;使用该功能可将客户端应用代码直接写入与 ALSA 驱动程序共享的内存映射缓冲区…

HarmonyOS4.0系统性深入开发15Want概述

Want概述 Want的定义与用途 Want是对象间信息传递的载体&#xff0c;可以用于应用组件间的信息传递。其使用场景之一是作为startAbility()的参数&#xff0c;包含了指定的启动目标以及启动时需携带的相关数据&#xff0c;如bundleName和abilityName字段分别指明目标Ability所…

模拟算法(模拟算法 == 依葫芦画瓢)万字

模拟算法 基本思想引入算法题替换所有的问号提莫攻击Z字形变换外观数列数青蛙 基本思想 模拟算法 依葫芦画瓢解题思维要么通俗易懂&#xff0c;要么就是找规律&#xff0c;主要难度在于将思路转换为代码。 特点&#xff1a;相对于其他算法思维&#xff0c;思路比较简单&#x…

线性代数 --- 为什么LU分解中L矩阵的行列式一定等于正负1?

以下是关于下三角矩阵L的行列式一定等于-1的一些说明 笔者的一些话(写在最前面)&#xff1a; 这是一篇小文&#xff0c;是我写的关于求解矩阵行列式的一篇文章中的一部分。之所以把这一段专门提溜出来&#xff0c;是因为这一段相对于原文是可以完全独立的&#xff0c;也是因为我…

YOLOv5改进 | 检测头篇 | 增加辅助检测头利用AFPN改进Head(附详细修改教程)

一、本文介绍 本文给大家带来的改进机制是利用今年新推出的AFPN(渐近特征金字塔网络)来优化检测头,AFPN的核心思想是通过引入一种渐近的特征融合策略,将底层、高层和顶层的特征逐渐整合到目标检测过程中。这种渐近融合方式有助于减小不同层次特征之间的语义差距,提高特征…

在VM下使用Composer完成快照方式的软件制作

Composer允许您构建软件、应用程序、偏好设置文件或是文档的安装包&#xff0c;安装包可以部署到远程电脑或是作为镜像流程的一部分。构建软件包的第一步就是创建包源&#xff0c;根据要打包的软件&#xff0c;Composer允许您监视软件的安装和使用驱动器上已存在的文件来创建包…

python豆瓣实例,抓取多页数据-应用到知识点:随时数,xpath,间隔请求sleep

源代码: <!DOCTYPE html> <html lang="zh-CN" class="ua-windows ua-webkit"> <head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta name="renderer" content=&q…

计算机网络-VLAN原理与配置

之前我们学习了以太网的基础知识&#xff0c;了解了网络交换设备的发展&#xff0c;交换机的工作原理&#xff0c;广播域和冲突域。 一、概述 还简单了解了以太网的CSMA/CD通讯机制&#xff0c;以太网是建立在CSMA/CD (Carrier Sense Multiple Access/Collision Detection&…

【LMM 014】NExT-GPT:能够输入和生成任意模态的多模态大模型

论文标题&#xff1a;NExT-GPT:Any-to-Any Multimodal Large Language Model 论文作者&#xff1a;Shengqiong Wu, Hao Fei*, Leigang Qu, Wei Ji, Tat-Seng Chua 作者单位&#xff1a; NExT Lab, National University of Singapore 论文原文&#xff1a;https://arxiv.org/abs…

学习笔记——C++运算符之逻辑运算符

作用&#xff1a;用于根据表达式的真值返回真值或假值 逻辑运算符有以下符号&#xff1a; #include<bits/stdc.h> using namespace std; int main(){// 逻辑运算符 非 !int a10;//在c中&#xff0c;除了0均是真 cout<<!a<<endl;//0 cout<<!!a<<…

《MySQL系列-InnoDB引擎06》MySQL锁介绍

文章目录 第六章 锁1 什么是锁2 lock与latch3 InnoDB存储引擎中的锁3.1 锁的类型3.2 一致性非锁定读3.3 一致性锁定读3.4 自增长与锁3.5 外键和锁 4 锁的算法4.1 行锁的三种算法4.2 解决Phantom Problem 5 锁问题5.1 脏读5.2 不可重复读5.3 丢失更新 6 阻塞7 死锁 第六章 锁 开…

解决使用localhost或127.0.01模拟CORS失效

解决使用localhost或127.0.01模拟CORS失效 前言问题发现问题解决 前言 CORS (Cross-Origin Resource Sharing) 指的是一种机制&#xff0c;它允许不同源的网页请求访问另一个源服务器上的某些资源。通常情况下&#xff0c;如果 JavaScript 代码在一个源中发起了 AJAX 请求&…

CentOS使用docker安装mysql并使用navicat 远程链接

这篇文章没用开启mysql的挂载功能&#xff0c;如果想开启的话可以和我的下篇文章结合着看。 CentOS中开启mysql挂载-CSDN博客 docker在之前的文章中已经安装完成了 这里输入命令查询已被上传的MySQL镜像 docker search mysql这里stars代表点赞数&#xff0c;official代表官…