【2023年最新】提高分类模型指标的六大方案详解

文章目录

  • 数据增强
  • 特征选择
  • 调整模型参数
  • 模型集成
  • 迁移学习
  • 模型解释
  • 完结

当今,机器学习模型得到了广泛的应用,其中分类模型是其中最常见和重要的一种。在实际应用中,如何提高分类模型的指标,使其在不同场景下表现更佳并且具有更好的泛化能力,一直是机器学习工程师们所追求的目标之一。本文将为大家介绍提高分类模型指标的六大方案,包括数据增强、特征选择、调整模型参数、模型集成、迁移学习和模型解释,以及这些方案在实际应用中的示例代码。无论你是刚刚入门的初学者还是经验丰富的数据科学家,都可以从中学到有价值的知识和实践经验。

数据增强

在这里插入图片描述

数据增强是指在原始数据集的基础上生成新的、具有多样性的数据集,以扩充数据集的规模并增加数据集的多样性。这可以帮助模型更好地学习不同场景下的特征,并提高其泛化能力。例如,在图像分类任务中,可以对图像进行旋转、平移、缩放、翻转等操作来生成新的图像。

在实现上,可以使用 Keras 或者 TensorFlow 中的数据生成器(如 ImageDataGenerator)来实现数据增强。以 Keras 为例,示例代码如下:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

datagen = ImageDataGenerator(
    rotation_range=30,  # 随机旋转30度
    width_shift_range=0.1,  # 随机左右平移10%
    height_shift_range=0.1,  # 随机上下平移10%
    shear_range=0.2,  # 随机错切变换20%
    zoom_range=0.2,  # 随机缩放20%
    horizontal_flip=True,  # 随机水平翻转
    fill_mode='nearest'  # 用最近邻插值填充
)

train_generator = datagen.flow(x_train, y_train, batch_size=32)

在上述代码中,我们使用 ImageDataGenerator 对训练数据进行数据增强,随机对图像进行平移、旋转、错切、缩放等操作,从而扩充训练集的规模和多样性。这样训练出来的模型能够更好地适应不同场景下的特征,提高模型的泛化能力。

特征选择

在这里插入图片描述

特征选择是指从所有特征中选择最具有代表性的特征,以提高模型的准确率和泛化能力。例如,在图像分类任务中,我们可以从原始图像中提取出各种特征(例如颜色直方图、纹理信息、梯度信息等)作为模型输入,然后利用特征选择方法选择最有价值的特征作为模型的输入,从而降低维度,提高模型的训练和预测速度,并且能够避免噪音或者冗余特征的干扰。

常见的特征选择方法有卡方检验、相关系数、互信息等。以卡方检验为例,示例代码如下:

from sklearn.feature_selection import SelectKBest, chi2

selector = SelectKBest(chi2, k=10)
X_new = selector.fit_transform(X, y)

在上述代码中,我们使用 SelectKBest 对数据进行特征选择,采用卡方检验的方法选择排名前 K 个特征作为模型的输入。

调整模型参数

在这里插入图片描述

调整模型参数是指通过试验不同的超参数组合,找到最优的组合以提高模型的性能,使其更好地适应数据集。例如,在神经网络模型中,可以调整学习率、优化器、激活函数等参数。

常见的调参方法有网格搜索、随机搜索、贝叶斯优化等。以网格搜索为例,示例代码如下:

from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier

param_grid = { 
    'n_estimators': [50, 100, 150],
    'max_features': ['auto', 'sqrt', 'log2'],
    'max_depth' : [4,5,6,7,8],
}

rfc=RandomForestClassifier(random_state=42)

grid_search = GridSearchCV(estimator=rfc, param_grid=param_grid, cv=5)
grid_search.fit(X_train, y_train)

在上述代码中,我们使用 GridSearchCV 对随机森林模型进行调参,试验不同的 n_estimators、max_features、max_depth 参数组合,找到最优的组合,提高模型的准确率和泛化能力。

模型集成

模型集成是将多个模型的预测结果进行组合,以提高模型的准确率和稳定性。它可以通过融合不同模型的信息,提高模型的泛化能力,从而提高模型的分类精度。

常见的模型集成方法有投票法、平均法、堆叠法等。以投票法为例,示例代码如下:

from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC

models = [('logistic', LogisticRegression()),
          ('naive_bayes', GaussianNB()),
          ('svm', SVC())]

ensemble = VotingClassifier(estimators=models, voting='hard')
ensemble.fit(X_train, y_train)
y_pred = ensemble.predict(X_test)

在上述代码中,我们使用 VotingClassifier 对逻辑回归、朴素贝叶斯、SVM 三个模型进行集成,使用硬投票策略进行最终预测,从而提高分类准确率和稳定性。

迁移学习

迁移学习是指利用已经存在的模型或者预训练模型作为基础,在新任务上进行微调,以提高模型的分类准确率。例如,在图像分类任务中,可以利用预训练的模型(如 VGG、ResNet 等)的卷积层作为特征提取器,然后根据新数据集对预训练模型进行微调。

常见的迁移学习方法有特征提取、微调等。以微调为例,示例代码如下:

from keras.applications.resnet50 import ResNet50
from keras.layers import Dense, Flatten
from keras.models import Model

base_model = ResNet50(include_top=False, weights='imagenet', input_shape=(224, 224, 3))

x = base_model.output
x = Flatten()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)

model = Model(inputs=base_model.input, outputs=predictions)

for layer in base_model.layers:
    layer.trainable = False

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

model.fit(X_train, y_train, batch_size=32, epochs=10)

在上述代码中,我们使用 ResNet50 模型作为基础,对其顶层的全连接层进行替换和微调,改变输出层以适应新任务。然后冻结 ResNet50 的卷积层参数,在新数据集上进行训练和微调。

模型解释

模型解释是通过可视化或者其他方式,对模型进行解释说明,从而更好地理解模型的决策过程,并对模型进行优化改进。例如,在图像分类任务中,可以使用 Grad-CAM 等方法可视化神经网络的激活热力图,从而更好地理解神经网络的决策过程。

常见的模型解释方法有梯度可视化、CAM、LIME 等。以 CAM 为例,示例代码如下:

from keras.applications.vgg16 import VGG16
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input, decode_predictions
import numpy as np
import cv2

model = VGG16(weights='imagenet')

img_path = 'elephant.jpg'

img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

preds = model.predict(x)
class_idx = np.argmax(preds[0])
class_output = model.output[:, class_idx]

last_conv_layer = model.get_layer('block5_conv3')

grads = K.gradients(class_output, last_conv_layer.output)[0]
pooled_grads = K.mean(grads, axis=(0, 1, 2))
iterate = K.function([model.input], [pooled_grads, last_conv_layer.output[0]])
pooled_grads_value, conv_layer_output_value = iterate([x])
for i in range(512):
    conv_layer_output_value[:, :, i] *= pooled_grads_value[i]
heatmap = np.mean(conv_layer_output_value, axis=-1)

heatmap = np.maximum(heatmap, 0)
heatmap /= np.max(heatmap)
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
heatmap = np.uint8(heatmap * 255)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
superimposed_img = np.uint8(heatmap * 0.4 + img)

cv2.imshow('original', img)
cv2.imshow('cam', superimposed_img)
cv2.waitKey(0)

在上述代码中,我们使用 VGG16 模型对图像进行分类,并使用 CAM(类激活热力图)的方法来可视化神经网络的激活热力图,从而更好地理解神经网络的决策过程。

以上是六个提高分类模型指标的方案。它们可以单独使用,也可以结合使用,依据具体情况选择最合适的组合,以达到优化模型的效果。

完结

----------------------------------撒花--------------------------------------------------------------------------------

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/29559.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vue中如何进行音频可视化与音频频谱展示

Vue中如何进行音频可视化与音频频谱展示 随着音频应用程序的不断发展,音频可视化和音频频谱展示成为了重要的功能。在Vue应用程序中实现音频可视化和音频频谱展示可以帮助用户更好地了解音频文件的内容和特征。本文将介绍如何在Vue应用程序中实现音频可视化和音频频…

《嵌入式系统》知识总结10:使用位带操作操纵GPIO

位操作 汇编层面 外设控制常要针对字中某个位(Bit)操作 以字节编址的存储器地址空间中,需要3步骤(读出-修改-写回) 1.(从外设)读取包含该位的字节数据 2. 设置该位为0或1、同时屏蔽其他位&am…

POI in Action

1 POI 组件依赖 按需引入对应依赖 (给出官方的指引) 组件作用Maven依赖POIFSOLE2 FilesystempoiHPSFOLE2 Property SetspoiHSSFExcel XLSpoiHSLFPowerPoint PPTpoi-scratchpadHWPFWord DOCpoi-scratchpadHDGFVisio VSDpoi-scratchpadHPBFPublisher PUBpoi-scratchpadHSMFOutl…

【gitflow】 概念基本介绍

gitflow 简介 什么是gitflow? 我们大家都很会用git,但是我们很少去关心我们要怎么用branch和版本控制。 只知道master是第一个主分支,其他分支都是次要分支, 那你知道如下的问题如何回答吗? 如何保证主分支的稳定…

【哈佛积极心理学笔记】第22讲 自尊与自我实现

第22讲 自尊与自我实现 Unconditional self-esteem is the highest level, the level that Maslow would talk about “the self-actualization”, what David Schnarch talks about as “differentiated” or at the level of being known rather than desiring to be valida…

C语言复合类型之结构(struct)篇(结构指针)

结构相关知识总结 什么是结构?结构的声明与简单使用结构的初始化结构中成员变量的访问结构的初始化器结构数组结构数组的声明结构数组的成员标识 结构的嵌套结构指针结构作为参数在函数中传递将结构成员作为参数进行传递将结构地址(指向结构的指针)作为参数进行传递…

C语言进阶--指针(C语言灵魂)

目录 1.字符指针 2.指针数组 3.数组指针 4.数组参数与指针参数 4.1.一维数组传参 4.2.二维数组传参 4.3.一级指针传参 4.4.二级指针传参 5.函数指针 6.函数指针数组 7.指向函数指针数组的指针 8.回调函数 qsort函数 9.指针和数组笔试题 10.指针笔试题 前期要点回…

Linux学习[16]bash学习深入2---别名设置alias---history指令---环境配置相关

文章目录 前言1. alias2. history3. 环境配置相关总结 前言 linux学习15里面简单提了一下alias指令,就表明它是一个别名的作用,这节就展开来写一下。 同时上一节一笔带过的history指令,这一节也进行例子的演示记录。 最后是环境相关的配置&a…

常用API(String,ArrayList)

1:String类概述 String是字符串类型,可以定义字符串变量指向字符串对象String是不可变字符串的原因?1.String变量每次的修改都是产生并指向新的字符串对象。2.原来的字符串对象都是没有改变的,所以称不可变字符串。 2:String创建…

八股文总结

文章目录 项目介绍1.不动产项目项目难点机器学习算法调研图像提取算法调研数据集-ImageNetXceptionVGGInceptionDensenetMobilenet 系统流程图 2.图书项目技术栈ShiroMybatisMyBatis:Mybatis Plus: 面试问题 Java基础基本数据类型反射接口和抽象类异常代理模式1. 静态代理2. 动…

『DevOps最佳实践』使用Jenkins和Harbor进行持续集成和交付的解决方案

📣读完这篇文章里你能收获到 全文采用图文形式讲解学会使用Harbor配置项目学会在Jenkins中配置Harbor推送权限使用Jenkins和Harbor进行持续集成的实践感谢点赞收藏,避免下次找不到~ 文章目录 一、准备工作1. 环境准备2. 修改Docker配置文件3. Docker登陆…

【SpringCloud】三、Nacos服务注册+配置管理+集群搭建

文章目录 一、认识Nacos1、安装2、服务注册和发现3、服务分级存储模型4、负载均衡策略--NacosRule5、服务实例的权重设置5、环境隔离namespace6、Eureka和Nacos的区别 二、Nacos配置管理1、统一配置管理2、微服务配置拉取3、配置热更新4、多环境配置共享 三、Nacos集群搭建1、初…

架构-嵌入式模块

章节架构 约三分,主要为选择题 #mermaid-svg-z6RGCDSEQT5AhE1p {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-z6RGCDSEQT5AhE1p .error-icon{fill:#552222;}#mermaid-svg-z6RGCDSEQT5AhE1p .error-text…

Apifox(1)比postman更优秀的接口自动化测试平台

Apifox介绍 Apifox 是 API 文档、API 调试、API Mock、API 自动化测试一体化协作平台,定位 Postman Swagger Mock JMeter。通过一套系统、一份数据,解决多个系统之间的数据同步问题。只要定义好 API 文档,API 调试、API 数据 Mock、API 自…

利用腾讯云函数隐藏C2服务器

1、简介 腾讯云函数,可以为企业和开发者提供无服务器执行环境,无需购买和管理服务器,只需要在腾讯云上使用平台支持的语言编写核心代码并设置代码运行的条件,即可在腾讯云基础设施上弹性 安全地运行代码。 C2服务器所有流量通过腾…

AB32VG1:SDK_AB53XX_V061(4)蓝牙音频测试笔记

文章目录 1. 淘宝上两种开发板,有一种的蓝牙功能不正常2. 蓝牙音频测试2.1 《config.h》和《Boombox.setting》两个配置以哪个为准2.2 codeblocks更换链接库2.2.1 这样进入build options是错的2.2.2 build options正确打开方式 2.3.编译工程,下载运行2.3…

手撕学生管理系统超详解——【c++】

题目要求:设计一个学生成绩管理程序,实现按班级完成对学生成绩信息的录入和修改,并用文件保存。 实现按班级输出学生的成绩单;实现按学号和姓名进行查询,按平均成绩进行排序功能。 问题描述 该程序的目标是提供一个简单且易于使用…

Linux本地搭建GitLab服务器 - 内网穿透远程访问

文章目录 前言1. 下载Gitlab2. 安装Gitlab3. 启动Gitlab4. 安装cpolar内网穿透5. 创建隧道配置访问地址6. 固定GitLab访问地址6.1 保留二级子域名6.2 配置二级子域名 7. 测试访问二级子域名 转载自cpolar极点云文章:Linux搭建GitLab私有仓库,并内网穿透实…

为什么我们需要API接口?API接口的核心又是什么?

API(Application Programming Interface)是一种连接不同软件之间的标准化的接口,可以让不同软件间进行数据交互和通信。API接口的作用很多,以下是几个主要的原因: 1.提高软件系统的灵活性和可扩展性。API接口可以将不…

Banana Pi BPI-R3 Mini:2.5GbE 嵌入式路由器板,MTK7986方案

香蕉派 BPI-R3 Mini Banana Pi BPI-R3 Mini 是一款功能强大的 SBC 路由器板,专为需要高速网络功能的个人和企业而设计。这款路由器是广受欢迎的 Banana Pi R3 路由器板的小兄弟,配备了先进的功能,旨在提供可靠的性能,是需要可靠网…