1 基本概念
1.1 什么是CUDA?
CUDA(ComputeUnified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。
CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员可以使用C语言来为CUDA™架构编写程序,所编写出的程序可以在支持CUDA™的处理器上以超高性能运行。
1.2 什么是CUDNN?
NVIDIA cuDNN是用于深度神经网络的GPU加速库。它强调性能、易用性和低内存开销。NVIDIA cuDNN可以集成到更高级别的机器学习框架中,如谷歌的Tensorflow、加州大学伯克利分校的流行caffe软件。简单的插入式设计可以让开发人员专注于设计和实现神经网络模型,而不是简单调整性能,同时还可以在GPU上实现高性能现代并行计算。
1.3 CUDA与CUDNN的关系
CUDA看作是一个工作台,上面配有很多工具,如锤子、螺丝刀等。cuDNN是基于CUDA的深度学习GPU加速库,有了它才能在GPU上完成深度学习的计算。它就相当于工作的工具,比如它就是个扳手。但是CUDA这个工作台买来的时候,并没有送扳手。想要在CUDA上运行深度神经网络,就要安装cuDNN,就像你想要拧个螺帽就要把扳手买回来。这样才能使GPU进行深度神经网络的工作,工作速度相较CPU快很多。
如果这是你第一次使用CUDA,在Linux系统中,你可能想使用以下命令来检查CUDA
编译器是否正确安装:
nvcc
使用nvidia-smi查询GPU信息
nvidia-smi
在运行时设置设备
CUDA_VISIBLE_DEVICES=2,nvidia驱动程序会屏蔽其他GPU,这时设备2作为设备0出现在应用程序中。
CUDA_VISIBLE_DEVICES=2,3 nvidia驱动程序将只使用ID为2和3的设备,并且会将设备ID分别映射为0和1。
使用运行时API查询GPU信息
checkDeviceInfor.cu
#include "../common/common.h"
#include <cuda_runtime.h>
#include <stdio.h>
/*
* Display a variety of information on the first CUDA device in this system,
* including driver version, runtime version, compute capability, bytes of
* global memory, etc.
*/
int main(int argc, char **argv)
{
printf("%s Starting...\n", argv[0]);
int deviceCount = 0;
cudaGetDeviceCount(&deviceCount);
if (deviceCount == 0)
{
printf("There are no available device(s) that support CUDA\n");
}
else
{
printf("Detected %d CUDA Capable device(s)\n", deviceCount);
}
int dev = 0, driverVersion = 0, runtimeVersion = 0;
cudaDeviceProp deviceProp;
for(; dev < deviceCount; dev++)
{
CHECK(cudaSetDevice(dev));
CHECK(cudaGetDeviceProperties(&deviceProp, dev));
printf("Device %d: \"%s\"\n", dev, deviceProp.name);
}
cudaDriverGetVersion(&driverVersion);
cudaRuntimeGetVersion(&runtimeVersion);
printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n",
driverVersion / 1000, (driverVersion % 100) / 10,
runtimeVersion / 1000, (runtimeVersion % 100) / 10);
printf(" CUDA Capability Major/Minor version number: %d.%d\n",
deviceProp.major, deviceProp.minor);
printf(" Total amount of global memory: %.2f GBytes (%llu "
"bytes)\n", (float)deviceProp.totalGlobalMem / pow(1024.0, 3),
(unsigned long long)deviceProp.totalGlobalMem);
printf(" GPU Clock rate: %.0f MHz (%0.2f "
"GHz)\n", deviceProp.clockRate * 1e-3f,
deviceProp.clockRate * 1e-6f);
printf(" Memory Clock rate: %.0f Mhz\n",
deviceProp.memoryClockRate * 1e-3f);
printf(" Memory Bus Width: %d-bit\n",
deviceProp.memoryBusWidth);
if (deviceProp.l2CacheSize)
{
printf(" L2 Cache Size: %d bytes\n",
deviceProp.l2CacheSize);
}
printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), "
"2D=(%d,%d), 3D=(%d,%d,%d)\n", deviceProp.maxTexture1D,
deviceProp.maxTexture2D[0], deviceProp.maxTexture2D[1],
deviceProp.maxTexture3D[0], deviceProp.maxTexture3D[1],
deviceProp.maxTexture3D[2]);
printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, "
"2D=(%d,%d) x %d\n", deviceProp.maxTexture1DLayered[0],
deviceProp.maxTexture1DLayered[1], deviceProp.maxTexture2DLayered[0],
deviceProp.maxTexture2DLayered[1],
deviceProp.maxTexture2DLayered[2]);
printf(" Total amount of constant memory: %lu bytes\n",
deviceProp.totalConstMem);
printf(" Total amount of shared memory per block: %lu bytes\n",
deviceProp.sharedMemPerBlock);
printf(" Total number of registers available per block: %d\n",
deviceProp.regsPerBlock);
printf(" Warp size: %d\n",
deviceProp.warpSize);
printf(" Maximum number of threads per multiprocessor: %d\n",
deviceProp.maxThreadsPerMultiProcessor);
printf(" Maximum number of threads per block: %d\n",
deviceProp.maxThreadsPerBlock);
printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n",
deviceProp.maxThreadsDim[0],
deviceProp.maxThreadsDim[1],
deviceProp.maxThreadsDim[2]);
printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n",
deviceProp.maxGridSize[0],
deviceProp.maxGridSize[1],
deviceProp.maxGridSize[2]);
printf(" Maximum memory pitch: %lu bytes\n",
deviceProp.memPitch);
exit(EXIT_SUCCESS);
}