基于深度学习的交通标志图像分类识别系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 

1. 项目简介

        本文详细探讨了一基于深度学习的交通标志图像识别系统。采用TensorFlow和Keras框架,利用卷积神经网络(CNN)进行模型训练和预测,并引入VGG16迁移学习模型,取得96%的高准确率。通过搭建Web系统,用户能上传交通标志图片,系统实现了自动实时的交通标志分类识别。该系统不仅展示了深度学习在交通领域的实际应用,同时为用户提供了一种高效、准确的交通标志识别服务。

2. 交通标志数据集读取

        数据集里面的图像具有不同大小,光照条件,遮挡情况下的43种不同交通标志符号,图像的成像情况与你实际在真实环境中不同时间路边开车走路时看到的交通标志的情形非常相似。训练集包括大约39,000个图像,而测试集大约有12,000个图像。图像不能保证是固定 的尺寸,标志不一定在每个图像中都是居中。每个图像包含实际交通标志周围10%左右的边界。

folders = os.listdir(train_path)

train_number = []
class_num = []

for folder in folders:
    train_files = os.listdir(train_path + '/' + folder)
    train_number.append(len(train_files))
    class_num.append(classes[int(folder)])
    
# 不同类别交通标志数量,并进行排序
zipped_lists = zip(train_number, class_num)
sorted_pairs = sorted(zipped_lists)
tuples = zip(*sorted_pairs)
train_number, class_num = [ list(t) for t in  tuples]

# 绘制不同类别交通标志数量分布柱状图
plt.figure(figsize=(21,10))  
plt.bar(class_num, train_number)
plt.xticks(class_num, rotation='vertical', fontsize=16)
plt.title('不同类别交通标志数量分布柱状图', fontsize=20)
plt.show()

         划分训练集、验证集:

X_train, X_val, y_train, y_val = train_test_split(image_data, image_labels, test_size=0.3, random_state=42, shuffle=True)

X_train = X_train/255 
X_val = X_val/255

print("X_train.shape", X_train.shape)
print("X_valid.shape", X_val.shape)
print("y_train.shape", y_train.shape)
print("y_valid.shape", y_val.shape)

        类别标签进行 One-hot 编码:

y_train = keras.utils.to_categorical(y_train, NUM_CATEGORIES)
y_val = keras.utils.to_categorical(y_val, NUM_CATEGORIES)

print(y_train.shape)
print(y_val.shape)

3. 卷积神经网络模型构建

model = keras.models.Sequential([    
    keras.layers.Conv2D(filters=16, kernel_size=(3,3), activation='relu', input_shape=(IMG_HEIGHT,IMG_WIDTH,channels)),
    keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation='relu'),
    
    # ......
    
    keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation='relu'),
    
    # ......
    
    keras.layers.Flatten(),
    keras.layers.Dense(512, activation='relu'),
    keras.layers.BatchNormalization(),
    keras.layers.Dropout(rate=0.5),
    
    keras.layers.Dense(43, activation='softmax')
])

4. 模型训练与性能评估

        设置模型训练参数:

epochs = 20

initial_learning_rate = 5e-5

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, #设置初始学习率
        decay_steps=64,      #每隔多少个step衰减一次
        decay_rate=0.98,     #衰减系数
        staircase=True)

# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])

history = model.fit(X_train, y_train, batch_size=32, epochs=epochs, validation_data=(X_val, y_val))

        加载测试集进行模型评估: 

# 计算测试集准确率
pred = model.predict(X_test)
pred_labels = np.argmax(pred, 1)

print('测试集准确率: ',accuracy_score(labels, pred_labels)*100)
测试集准确率:  93.24623911322249

5. 基于迁移学习的交通标志识别

from tensorflow.keras.applications import VGG16

height = 32
width = 32

vgg_base_model = VGG16(weights='imagenet', include_top=False, input_shape=(height,width,3))
vgg_base_model.trainable=True

vgg_model = tf.keras.Sequential([
    vgg_base_model,
    keras.layers.BatchNormalization(),
    keras.layers.Flatten(),
    keras.layers.Dense(512, activation='relu'),
    keras.layers.BatchNormalization(),
    keras.layers.Dropout(rate=0.5),
    keras.layers.Dense(43, activation='softmax')])

vgg_model.summary()

Epoch 1/20
858/858 [==============================] - ETA: 0s - loss: 0.9774 - accuracy: 0.7366
Epoch 1: val_accuracy improved from -inf to 0.94806, saving model to best_model.h5
858/858 [==============================] - 334s 387ms/step - loss: 0.9774 - accuracy: 0.7366 - val_loss: 0.1651 - val_accuracy: 0.9481
Epoch 2/20
858/858 [==============================] - ETA: 0s - loss: 0.0737 - accuracy: 0.9804
Epoch 2: val_accuracy improved from 0.94806 to 0.97866, saving model to best_model.h5
858/858 [==============================] - 350s 408ms/step - loss: 0.0737 - accuracy: 0.9804 - val_loss: 0.0750 - val_accuracy: 0.9787
Epoch 3/20
858/858 [==============================] - ETA: 0s - loss: 0.0274 - accuracy: 0.9926
Epoch 3: val_accuracy improved from 0.97866 to 0.98266, saving model to best_model.h5
858/858 [==============================] - 351s 409ms/step - loss: 0.0274 - accuracy: 0.9926 - val_loss: 0.0681 - val_accuracy: 0.9827
Epoch 4/20
858/858 [==============================] - ETA: 0s - loss: 0.0197 - accuracy: 0.9946
Epoch 4: val_accuracy improved from 0.98266 to 0.99779, saving model to best_model.h5
858/858 [==============================] - 339s 395ms/step - loss: 0.0197 - accuracy: 0.9946 - val_loss: 0.0085 - val_accuracy: 0.9978
Epoch 5/20
858/858 [==============================] - ETA: 0s - loss: 0.0081 - accuracy: 0.9982
Epoch 5: val_accuracy improved from 0.99779 to 0.99830, saving model to best_model.h5
858/858 [==============================] - 364s 424ms/step - loss: 0.0081 - accuracy: 0.9982 - val_loss: 0.0067 - val_accuracy: 0.9983
Epoch 6/20
858/858 [==============================] - ETA: 0s - loss: 0.0025 - accuracy: 0.9995
Epoch 6: val_accuracy improved from 0.99830 to 0.99855, saving model to best_model.h5
858/858 [==============================] - 354s 413ms/step - loss: 0.0025 - accuracy: 0.9995 - val_loss: 0.0053 - val_accuracy: 0.9986
Epoch 7/20
858/858 [==============================] - ETA: 0s - loss: 0.0030 - accuracy: 0.9992
Epoch 7: val_accuracy did not improve from 0.99855
858/858 [==============================] - 333s 389ms/step - loss: 0.0030 - accuracy: 0.9992 - val_loss: 0.0126 - val_accuracy: 0.9969
Epoch 7: early stopping 

         模型评估:

# 计算测试集准确率
pred = vgg_model.predict(X_test)
pred_labels = np.argmax(pred, 1)

print('测试集准确率: ',accuracy_score(labels, pred_labels)*100)

         测试集准确率: 96.02533650039588

6. 测试集预测结果可视化

plt.figure(figsize = (25, 25))

start_index = 0
for i in range(25):
    plt.subplot(5, 5, i + 1)
    plt.grid(False)
    plt.xticks([])
    plt.yticks([])
    prediction = pred_labels[start_index + i]
    actual = labels[start_index + i]
    col = 'g'
    if prediction != actual:
        col = 'r'
    plt.xlabel('实际类别:{}\n预测类别:{}'.format(classes[actual], classes[prediction]), color = col, fontsize=18)
    plt.imshow(X_test[start_index + i])
plt.show()

7. 交通标志分类识别系统

7.1 首页

7.2 交通标志在线识别

8. 结论

        本文详细探讨了一基于深度学习的交通标志图像识别系统。采用TensorFlow和Keras框架,利用卷积神经网络(CNN)进行模型训练和预测,并引入VGG16迁移学习模型,取得96%的高准确率。通过搭建Web系统,用户能上传交通标志图片,系统实现了自动实时的交通标志分类识别。该系统不仅展示了深度学习在交通领域的实际应用,同时为用户提供了一种高效、准确的交通标志识别服务。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python数据挖掘精品实战案例

2. 计算机视觉 CV 精品实战案例

3. 自然语言处理 NLP 精品实战案例

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/288944.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【obj To 3DTiles 格式转换】 可以自定义经纬高、属性表等参数。

目录 0 引言1 3DTiles数据2 objTo3DTiles2.1 工具的安装2.1.1 拓展:Node.js 和 npm 2.2 工具的使用2.2.1 输出成瓦片数据2.2.2 输出带有坐标参数的瓦片数据 3 查看3DTiles数据 🙋‍♂️ 作者:海码007📜 专栏:Cesiumfor…

探索 Vue 实例方法的魅力:提升 Vue 开发技能(下)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

苹果小绿灯电路。

苹果充电器上的小绿灯。是5脚供电。一开始的时候,5脚电压是没有的。所以,比较器的3端电压没有,而1端电压呢?受到ACIN DETECTION电路控制,如图所示。当检测到适配器供电的时候,发出高电平SMC_BC_ACOK&#x…

yolo v7支持的设备

将一个深度学习模型(在这里是YOLOv7,一个目标检测模型)从PyTorch导出到不同的格式,以便在不同平台上进行推理(inference)。列出的方法包括: PyTorch 转 CoreML(适用于 macOS/iOS&am…

Unity中Shader的Reversed-Z(DirectX平台)

文章目录 前言一、在对裁剪坐标归一化设置NDC时,DirectX平台Z的特殊二、在图形计算器中,看一下Z值反转前后变化1、在图形计算器创建两个变量 n 和 f 分别 控制近裁剪面 和 远裁剪面2、带入公式得到齐次裁剪空间下Z值3、进行透视除法4、用 1 - Z 得出Z值反…

docker小白第十一天

docker小白第十一天 dockerfile分析 Dockerfile是用来构建Docker镜像的文本文件,是由一条条构建镜像所需的指令和参数构成的脚本。即构建新镜像时会用到。 构建三步骤:编写dockerfile文件-docker build命令构建镜像-docker run镜像 运行容器实例。即一…

TB-C/C++

1.main函数之前之后执行的代码 设置栈指针初始化静态变量和全局变量(.data段内容,已初始化且不为0)赋初值(.bss段内容,未初始化的全局变量和静态变量)传参(argc,argv)atexit() 在…

C++-类和对象(2)

1.类的6个默认成员函数 如果一个类中什么成员都没有,简称为空类。 空类中真的什么都没有吗?并不是,任何类在什么都不写时,编译器会自动生成以下 6 个默认成员 函数。 默认成员函数:用户没有显式实现,编译…

13个干货议题!拓数派携众多大咖共话国产数据库未来趋势

1月6日下午,由拓数派、PolarDB 开源社区、PostgreSQL 中文社区共同主办的《国产数据库共话未来趋势》技术沙龙将在上海举行。 本次沙龙现场大咖云集,来自拓数派、阿里云、平安科技等公司的众多行业技术大咖将与大家面对面交流,与广大技术爱好…

MySQL中的六种日志你都懂么?不懂!那就必须看看

😄 19年之后由于某些原因断更了三年,23年重新扬帆起航,推出更多优质博文,希望大家多多支持~ 🌷 古之立大事者,不惟有超世之才,亦必有坚忍不拔之志 🎐 个人CSND主页——Mi…

【Linux】深度解剖环境变量

> 作者简介:დ旧言~,目前大二,现在学习Java,c,c,Python等 > 座右铭:松树千年终是朽,槿花一日自为荣。 > 目标:熟悉并掌握Linux的环境变量。 > 毒鸡汤&#x…

基于SSM的滁艺咖啡在线销售系统设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

基于果蝇算法优化的Elman神经网络数据预测 - 附代码

基于果蝇算法优化的Elman神经网络数据预测 - 附代码 文章目录 基于果蝇算法优化的Elman神经网络数据预测 - 附代码1.Elman 神经网络结构2.Elman 神经用络学习过程3.电力负荷预测概述3.1 模型建立 4.基于果蝇优化的Elman网络5.测试结果6.参考文献7.Matlab代码 摘要:针…

CSS 中间位置翻转动画

<template><div class"container" mouseenter"startAnimation" mouseleave"stopAnimation"><!-- 旋方块 --><div class"box" :class"{ rotate-hor-center: isAnimating }"><!-- 元素内容 -->…

Unity之ShaderGraph如何实现瓶装水效果

前言 有一个场景在做效果时,有一个水瓶放到桌子上的设定,但是模型只做了个水瓶,里面是空的,所以我就想办法,如何做出来瓶中液体的效果,最好是能跟随瓶子有液体流动的效果。 如下图所示: 水面实现 水面效果 液体颜色设置 因为液体有边缘颜色和内里面颜色,所以要分开…

【vue】Easy Player实现视频播放:

文章目录 一、效果&#xff1a;二、文档&#xff1a;三、实现&#xff1a;【1】安装插件&#xff1a;【2】引入js文件&#xff1a;【3】使用&#xff1a; 四、方法&#xff1a; 一、效果&#xff1a; 二、文档&#xff1a; GitCode - EasyPlayer.js npm-easydarwin/easyplayer…

FairGuard游戏加固产品常见问题解答

针对日常对接中&#xff0c;各位用户对FairGuard游戏加固方案在安全性、稳定性、易用性、接入流程等方面的关注&#xff0c;我们梳理了相关问题与解答&#xff0c;希望可以让您对产品有一个初步的认知与认可。 Q1:FairGuard游戏加固产品都有哪些功能? A&#xff1a;FairGuar…

贝叶斯推断:细谈贝叶斯变分和贝叶斯网络

1. 贝叶斯推断 统计推断这件事大家并不陌生&#xff0c;如果有一些采样数据&#xff0c;我们就可以去建立模型&#xff0c;建立模型之后&#xff0c;我们通过对这个模型的分析会得到一些结论&#xff0c;不管我们得到的结论是什么样的结论&#xff0c;我们都可以称之为是某种推…

Linux 485驱动通信异常

背景 前段时间接到一个项目&#xff0c;要求用主控用485和MCU通信。将代码调试好之后&#xff0c;验证没问题就发给测试了。测试测的也没问题。 但是&#xff0c;到设备量产时&#xff0c;发现有几台设备功能异常。将设备拿回来排查&#xff0c;发现是485通信有问题&#xff…

电脑提示找不到msvcp140.dll的修复方法,亲测有效的两种方法

msvcp140.dll是Microsoft Visual C 2015 Redistributable的一个组件&#xff0c;它包含了许多C运行时库文件。这些库文件为运行基于C编写的应用程序提供了必要的支持。当系统中缺少某个或某些库文件时&#xff0c;就可能出现msvcp140.dll丢失的错误。 一、以下是msvcp140.dll文…