流媒体学习之路(WebRTC)——Pacer与GCC(5)

流媒体学习之路(WebRTC)——Pacer与GCC(5)

——
我正在的github给大家开发一个用于做实验的项目 —— github.com/qw225967/Bifrost

目标:可以让大家熟悉各类Qos能力、带宽估计能力,提供每个环节关键参数调节接口并实现一个json全配置,提供全面的可视化算法观察能力。

欢迎大家使用
——

文章目录

  • 流媒体学习之路(WebRTC)——Pacer与GCC(5)
  • 一、PacingController
    • 1.1 背景介绍
    • 1.2 代码
  • 二、IntervalBudget
    • 2.1 背景
    • 2.2 代码
  • 三、PacedSender
  • 四、总结


  在讲具体内容之前插一句嘴,从GCC分析(3)开始,我们将针对GCC的实现细节去分析它设计的原理,让我们理解这些类存在的意义,不再带大家去串具体的流程了。

一、PacingController

1.1 背景介绍

  Pacer(Packet Pacing)的作用是在传输数据时能平滑的发送出去,减少对网络冲击和抖动的产生,提高通信质量。在一次数据传输中,如果所有包几乎同时发送,网络就可能会遭遇到冲击,这就可能导致网络拥塞,数据包丢失等问题。为了避免这样的问题,需要通过一个定时器均匀分散发送数据包。
  特别是在音视频传输中,PACER更是非常重要的一部分。因为音视频的传输对于网络的稳定性和实时性要求非常高,任何形式的网络抖动或者丢包都会造成音视频的卡顿,延迟等问题。所以在WebRTC中使用Pacer,就是为了使音视频传输更加平滑,减少由于网络抖动造成的影响,从而达到提高实时音视频通信质量的目的。

  提到WebRTC的Pacer就需要讲述它码率控制的逻辑:
在这里插入图片描述
  从GCC输出的码率会设置给编码器以及pacer。pacer并不是完全严格设置多少就发多少,而是留有2.5倍的空间去发送。真正控制发送码率的则是输出给编码器的部分,期望控制编码器的输出码率。同时,pacer还对所有数据设置了优先级,优先级如下:

int GetPriorityForType(RtpPacketToSend::Type type) {
  // Lower number takes priority over higher.
  switch (type) {
    case RtpPacketToSend::Type::kAudio:
      // Audio is always prioritized over other packet types.
      return kFirstPriority + 1;
    case RtpPacketToSend::Type::kRetransmission:
      // Send retransmissions before new media.
      return kFirstPriority + 2;
    case RtpPacketToSend::Type::kVideo:
    case RtpPacketToSend::Type::kForwardErrorCorrection:
      // Video has "normal" priority, in the old speak.
      // Send redundancy concurrently to video. If it is delayed it might have a
      // lower chance of being useful.
      return kFirstPriority + 3;
    case RtpPacketToSend::Type::kPadding:
      // Packets that are in themselves likely useless, only sent to keep the
      // BWE high.
      return kFirstPriority + 4;
  }
}

  Pacer之所设计成这样,是因为我们向编码器设置码率之后想要保证丝滑清晰的画面,不可能完全控制输出码率,有时候画面复杂码率就大一些,画面简单码率就小一些。所以Pacer为了保证延迟预留了2.5倍的发送空间,也就是说真正控制码率的位置其实是编码器的输出

1.2 代码

  接下来我看看看pacer的核心代码——PacingController。这个类包含了优先级设置以及发送的逻辑,前面提到了优先级的内容下面只介绍发送逻辑:

void PacingController::ProcessPackets() {
  Timestamp now = CurrentTime(); // 当前时间
  TimeDelta elapsed_time = UpdateTimeAndGetElapsed(now); // 与上次process的间隔

  // 发送保活,每500ms发送一个padding包,一旦发送的数据大于拥塞窗口则不发送
  if (ShouldSendKeepalive(now)) {
    DataSize keepalive_data_sent = DataSize::Zero();
    // 产生padding包
    std::vector<std::unique_ptr<RtpPacketToSend>> keepalive_packets =
        packet_sender_->GeneratePadding(DataSize::bytes(1));
    for (auto& packet : keepalive_packets) {
      keepalive_data_sent +=
          DataSize::bytes(packet->payload_size() + packet->padding_size());
      packet_sender_->SendRtpPacket(std::move(packet), PacedPacketInfo());
    }
    OnPaddingSent(keepalive_data_sent);
  }

  // 处于暂停直接返回
  if (paused_)
    return;
  
  // 进入发送间隔开始计算
  if (elapsed_time > TimeDelta::Zero()) {
    DataRate target_rate = pacing_bitrate_;
    DataSize queue_size_data = packet_queue_.Size();
    // 队列中有数据才能发送
    if (queue_size_data > DataSize::Zero()) {
      // Assuming equal size packets and input/output rate, the average packet
      // has avg_time_left_ms left to get queue_size_bytes out of the queue, if
      // time constraint shall be met. Determine bitrate needed for that.
      // 
      packet_queue_.UpdateQueueTime(CurrentTime());
      if (drain_large_queues_) {
        // 平均发送时间 = 最大队列时长(2s)- 平均排队时间
        TimeDelta avg_time_left =
            std::max(TimeDelta::ms(1),
                     queue_time_limit - packet_queue_.AverageQueueTime());
        DataRate min_rate_needed = queue_size_data / avg_time_left;
        // 最发送码率大于目标码率,则目标码率等于最小需求码率
        if (min_rate_needed > target_rate) {
          target_rate = min_rate_needed;
          RTC_LOG(LS_VERBOSE) << "bwe:large_pacing_queue pacing_rate_kbps="
                              << target_rate.kbps();
        }
      }
    }

    // 设置媒体桶
    media_budget_.set_target_rate_kbps(target_rate.kbps());
    UpdateBudgetWithElapsedTime(elapsed_time);
  }

  bool first_packet_in_probe = false;
  bool is_probing = prober_.IsProbing();
  PacedPacketInfo pacing_info;
  absl::optional<DataSize> recommended_probe_size;
  // 正在探测则获取探测数据信息
  if (is_probing) {
    pacing_info = prober_.CurrentCluster();
    first_packet_in_probe = pacing_info.probe_cluster_bytes_sent == 0;
    recommended_probe_size = DataSize::bytes(prober_.RecommendedMinProbeSize());
  }

  DataSize data_sent = DataSize::Zero();
  // The paused state is checked in the loop since it leaves the critical
  // section allowing the paused state to be changed from other code.
  // 
  while (!paused_) {
    if (small_first_probe_packet_ && first_packet_in_probe) {
      // If first packet in probe, insert a small padding packet so we have a
      // more reliable start window for the rate estimation.
      // 产生padding包
      auto padding = packet_sender_->GeneratePadding(DataSize::bytes(1));
      // If no RTP modules sending media are registered, we may not get a
      // padding packet back.
      if (!padding.empty()) {
        // Insert with high priority so larger media packets don't preempt it.
        EnqueuePacketInternal(std::move(padding[0]), kFirstPriority);
        // We should never get more than one padding packets with a requested
        // size of 1 byte.
        RTC_DCHECK_EQ(padding.size(), 1u);
      }
      first_packet_in_probe = false;
    }

    // 获取待发送包
    auto* packet = GetPendingPacket(pacing_info);
    // 一旦产生不了数据,证明队列为空,则放入padding数据
    if (packet == nullptr) {
      // No packet available to send, check if we should send padding.
      DataSize padding_to_add = PaddingToAdd(recommended_probe_size, data_sent);
      if (padding_to_add > DataSize::Zero()) {
        std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets =
            packet_sender_->GeneratePadding(padding_to_add);
        if (padding_packets.empty()) {
          // No padding packets were generated, quite send loop.
          break;
        }
        for (auto& packet : padding_packets) {
          EnqueuePacket(std::move(packet));
        }
        // Continue loop to send the padding that was just added.
        continue;
      }

      // Can't fetch new packet and no padding to send, exit send loop.
      break;
    }

    // 发送数据
    std::unique_ptr<RtpPacketToSend> rtp_packet = packet->ReleasePacket();
    RTC_DCHECK(rtp_packet);
    packet_sender_->SendRtpPacket(std::move(rtp_packet), pacing_info);

    data_sent += packet->size();
    // Send succeeded, remove it from the queue.
    OnPacketSent(packet);
    if (recommended_probe_size && data_sent > *recommended_probe_size)
      break;
  }
  
  if (is_probing) {
    probing_send_failure_ = data_sent == DataSize::Zero();
    if (!probing_send_failure_) {
      prober_.ProbeSent(CurrentTime().ms(), data_sent.bytes());
    }
  }
}

RoundRobinPacketQueue::QueuedPacket* PacingController::GetPendingPacket(
    const PacedPacketInfo& pacing_info) {
  if (packet_queue_.Empty()) {
    return nullptr;
  }

  // Since we need to release the lock in order to send, we first pop the
  // element from the priority queue but keep it in storage, so that we can
  // reinsert it if send fails.
  
  // 取出第一个包
  RoundRobinPacketQueue::QueuedPacket* packet = packet_queue_.BeginPop();
  bool audio_packet = packet->type() == RtpPacketToSend::Type::kAudio;
  bool apply_pacing = !audio_packet || pace_audio_;
  // 如果处于拥塞状态或者剩余数据为0则取消弹出
  if (apply_pacing && (Congested() || (media_budget_.bytes_remaining() == 0 &&
                                       pacing_info.probe_cluster_id ==
                                           PacedPacketInfo::kNotAProbe))) {
    
    packet_queue_.CancelPop();
    return nullptr;
  }
  return packet;
}

二、IntervalBudget

2.1 背景

  PacingController上述用到了IntervalBudget这个类,这个类用于做数据统计和预估。并且它作为一个抽象预估类,并不会真正的存数据,只是做了数据统计,每次排出数据后都按时间更新一次桶的容量,发送时则会把已发送的数据更新到桶数据中。
在这里插入图片描述

2.2 代码

  头文件:

class IntervalBudget {
 public:
  explicit IntervalBudget(int initial_target_rate_kbps);
  IntervalBudget(int initial_target_rate_kbps, bool can_build_up_underuse);
  void set_target_rate_kbps(int target_rate_kbps);

  // TODO(tschumim): Unify IncreaseBudget and UseBudget to one function.
  void IncreaseBudget(int64_t delta_time_ms);
  void UseBudget(size_t bytes);

  size_t bytes_remaining() const;
  double budget_ratio() const;
  int target_rate_kbps() const;

 private:
  int target_rate_kbps_;
  int64_t max_bytes_in_budget_;
  int64_t bytes_remaining_;
  bool can_build_up_underuse_;
};

  CPP文件:

constexpr int64_t kWindowMs = 500;
}

IntervalBudget::IntervalBudget(int initial_target_rate_kbps)
    : IntervalBudget(initial_target_rate_kbps, false) {}

IntervalBudget::IntervalBudget(int initial_target_rate_kbps,
                               bool can_build_up_underuse)
    : bytes_remaining_(0), can_build_up_underuse_(can_build_up_underuse) {
  set_target_rate_kbps(initial_target_rate_kbps);
}

void IntervalBudget::set_target_rate_kbps(int target_rate_kbps) {
  target_rate_kbps_ = target_rate_kbps;
  // 默认按500ms计算最大桶码率
  max_bytes_in_budget_ = (kWindowMs * target_rate_kbps_) / 8;
  // 计算剩余码率
  bytes_remaining_ = std::min(std::max(-max_bytes_in_budget_, bytes_remaining_),
                              max_bytes_in_budget_);
}

void IntervalBudget::IncreaseBudget(int64_t delta_time_ms) {
  // 按时换算桶的码率
  int64_t bytes = target_rate_kbps_ * delta_time_ms / 8;
  if (bytes_remaining_ < 0 || can_build_up_underuse_) {
    // We overused last interval, compensate this interval.
    // 把当前的码率加上
    bytes_remaining_ = std::min(bytes_remaining_ + bytes, max_bytes_in_budget_);
  } else {
    // If we underused last interval we can't use it this interval.
    // 一旦剩余码率为负则重新使用新计算的码率
    bytes_remaining_ = std::min(bytes, max_bytes_in_budget_);
  }
}

void IntervalBudget::UseBudget(size_t bytes) {
  // 把使用的数据进行统计
  bytes_remaining_ = std::max(bytes_remaining_ - static_cast<int>(bytes),
                              -max_bytes_in_budget_);
}

size_t IntervalBudget::bytes_remaining() const {
  return rtc::saturated_cast<size_t>(std::max<int64_t>(0, bytes_remaining_));
}

double IntervalBudget::budget_ratio() const {
  if (max_bytes_in_budget_ == 0)
    return 0.0;
  return static_cast<double>(bytes_remaining_) / max_bytes_in_budget_;
}

int IntervalBudget::target_rate_kbps() const {
  return target_rate_kbps_;
}

三、PacedSender

  上述的PacingController把具体的发送数据进行具体的计算,WebRTC把发送的逻辑和控制逻辑抽离了出来,其实PacingSender在构造时创建了PacingController并传入了this指针。因此对于PacingController来说PacingSender作为控制器在内部进行了回调。

  其他的函数我们不做具体的描述,只介绍定时函数:

int64_t PacedSender::TimeUntilNextProcess() {
  rtc::CritScope cs(&critsect_);

  // When paused we wake up every 500 ms to send a padding packet to ensure
  // we won't get stuck in the paused state due to no feedback being received.
  // 从controller中获取间隔
  TimeDelta elapsed_time = pacing_controller_.TimeElapsedSinceLastProcess();
  if (pacing_controller_.IsPaused()) {
    // 最大间隔为500ms
    return std::max(PacingController::kPausedProcessInterval - elapsed_time,
                    TimeDelta::Zero())
        .ms();
  }

  auto next_probe = pacing_controller_.TimeUntilNextProbe();
  if (next_probe) {
    return next_probe->ms();
  }

  const TimeDelta min_packet_limit = TimeDelta::ms(5);
  return std::max(min_packet_limit - elapsed_time, TimeDelta::Zero()).ms();
}

四、总结

  本文介绍了Pacer相关的内容,但我们的目的是通过Pacer去理解GCC的逻辑,在经过多个版本的迭代,Pacer与GCC的配合已经非常娴熟,同时耦合也是非常严重的:

  1. 每次Pacer的溢出发送,都需要GCC兜底(GCC的灵敏可以有效地检测到网络的排队,任何一个溢出的数据都能快速的下调码率,在遇到瓶颈带宽的时候出现了明显的锯齿状发送曲线);
    在这里插入图片描述

  2. 码率不足与拥塞探测的矛盾(编码器的输出往往会收到一定的限制不可能无线地上涨,在当今环境下很难探测到带宽瓶颈。Pacer的做法是提供Padding的数据作为补充探测,但大部分厂商为了避免流量过度消耗,就把探测的逻辑关闭了。在这方面来看,Pacer真是没有完全听GCC的话);

  也正是因为这样,WebRTC的Pacer是GCC的Pacer其他的拥塞算法来了,估计都水土不服,参考BBR被移除可知。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/288670.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

相关性与P值

相关性与P值 0 FQA&#xff1a;1 相关性与显著性的关系2 相关性分析3 使用medcalc进行相关性分析&#xff1a;参考文章&#xff1a; 0 FQA&#xff1a; 主要描述相关性和p值分别代表什么意义&#xff1f; 以及如何使用medcalc计算相关性和p值。 Q1&#xff1a;p值代表什么意义…

Document对象详解

前言 在前端开发中&#xff0c;DOM&#xff08;文档对象模型&#xff09;扮演着重要的角色。它允许我们使用JavaScript来与网页文档进行交互&#xff0c;实现动态的网页效果。DOM的核心部分之一就是Document对象&#xff0c;它代表了整个HTML文档。在本篇博客中&#xff0c;我们…

【笔记】书生·浦语大模型实战营——第一课

群公告 1月3日*更新 第一次课程视频链接&#xff1a;https://www.bilibili.com/video/BV1Rc411b7ns/&#xff0c;第一次课程只需要记笔记&#xff0c;没有作业。第一次课程(1月3日)和第二次课程(1月5日)到本周末(1月7日)截止&#xff0c;笔记记录在 知乎/CSDN/Github 或者任何你…

2023年互联网公司年度崩盘报告

B站崩了两次 2023年3月5日晚20:20左右&#xff0c;许多网友表示在使用B站时&#xff0c;手机和电脑端都无法访问视频详情页&#xff0c;且手机端无法查看收藏夹与历史记录。 8月4日晚间&#xff0c;距离上次事故5个月后&#xff0c;又有许多网友反馈B站图片&#xff08;视频封…

定时器PWM控制RGB彩灯案例

1.脉冲宽度调制PWM PWM&#xff08;Pulse Width Modulation&#xff09;简称脉宽调制&#xff0c;是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术&#xff0c;广泛应用在测量、通信、工控等方面。   PWM的一个优点是从处理器到​​ ​被控系统​​​信号…

软碟通UltraISO制作U盘安装Ubuntu

清华大学开源软件镜像站https://mirrors.tuna.tsinghua.edu.cn/ 从里面下载ubuntu-22.04-desktop-amd64.iso UltraISO是一款非常不错的U盘启动盘制作工具&#xff0c;一直被许多网友们所喜欢&#xff0c;使用简单、方便。 UltraISO官方下载地址&#xff1a;https://cn.ultrais…

5年经验之谈 —— 为什么要做自动化测试?

自动化测试是一种软件测试方法&#xff0c;通过编写和使用自动化脚本和工具&#xff0c;以自动执行测试用例并生成结果 自动化旨在替代手动测试过程&#xff0c;提高测试效率和准确性 自动化测试可以覆盖多种测试类型&#xff0c;包括功能测试、性能测试、安全测试等&#xf…

网工内推 | 网络工程师,NP认证优先,上市公司,包吃,最高15薪

01 无锡先导智能装备股份有限公司 招聘岗位&#xff1a;高级网络工程师 职责描述&#xff1a; 1.依据项目规划方案提供硬件及网络方案设计&#xff1b; 2.面向客户提供网络技术支持&#xff0c;包括故障的解决、性能的优化、日常维护等&#xff1b; 3.和合作伙伴、供应商的技术…

NLP论文阅读记录 - 2021 | RefSum:重构神经总结

文章目录 前言0、论文摘要一、Introduction1.1目标问题1.2相关的尝试1.3本文贡献 二.前提堆叠重新排序 三.本文方法3.1 总结为两阶段学习3.1.1 基础系统3.1.2 元系统 3.2 重构文本摘要3.2.1 重构3.2.2 预训练重构3.2.3 微调重构3.2.4 应用场景3.2.4.1 重构为基础学习者3.2.4.2 …

Vue学习计划-Vue3--核心语法(一)OptionsAPI、CompositionAPI与setup

1. OptionsAPI与CompositionAPI Vue2的API设计是Options(配置)风格的Vue3的API设计是Composition(组合)风格的 Options API的弊端&#xff1a; Options类型的API&#xff0c;数据、方法、计算属性等&#xff0c;是分散在&#xff1a;data、methods、computed中的&#xff0c;若…

【Linux Shell】1. Shell 简述

文章目录 【 1. Shell 解释器、Shell语言、Shell脚本 】【 2. Shell 环境 】【 3. 一个简单的 Shell 脚本 】3.1 Shell 脚本的编写3.2 Shell 脚本的运行3.2.1 作为可执行程序运行 Shell 脚本3.2.2 作为解释器参数运行 Shell 脚本 【 1. Shell 解释器、Shell语言、Shell脚本 】 …

正则表达式 详解,10分钟学会

大家好&#xff0c;欢迎来到停止重构的频道。 本期我们讨论正则表达式。 正则表达式是一种用于匹配和操作文本的工具&#xff0c;常用于文本查找、文本替换、校验文本格式等场景。 正则表达式不仅是写代码时才会使用&#xff0c;在平常使用的很多文本编辑软件&#xff0c;都…

华为月薪25K的自动化测试工程师到底要会那些技能!

​前言 3年自动化测试软件测试工程师职业生涯中&#xff0c;我所经历过的项目都是以自动化测试为主的。由于自动化测试是一个广泛的领域&#xff0c;我将自己的经验整理了一下分享给大家&#xff0c;话不多说&#xff0c;直接上干货。 自动化测试的目标和实践选择合适的自动化…

2023 年博客总结

当无所事事&#xff0c;没有多少收获的时候&#xff0c;时间过得格外的快… 当充实有为&#xff0c;经常有收获有进步的时候&#xff0c;才觉得时间没有浪费… 2023年收获不多… 以前说孩子小&#xff0c;需要照顾所以没时间&#xff0c;我以为孩子大点就有时间了&#xff0c;…

Plantuml之甘特图语法介绍(二十八)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

QML —— Canvas重绘钟表组件(附完整源码)

示例效果] 源码 main.cpp #include <QGuiApplication> #include <QQmlApplicationEngine>int main(int argc, char *argv[]) {QCoreApplication::setAttribute(Qt::AA_EnableHighDpiScaling);QGuiApplication app(argc, argv);QQmlApplicationEngine engine;const…

自动化测试框架 —— pytest框架入门到入职篇

01、pytest框架介绍 pytest 是 python 的第三方单元测试框架&#xff0c;比自带 unittest 更简洁和高效&#xff0c;支持非常丰富的插件&#xff0c;同时兼容 unittest 框架。这就使得我们在 unittest 框架迁移到 pytest 框架的时候不需要重写代码。 pytest框架优点 1、简单…

学习Vue 01 欢迎来到Vue的世界

学习Vue 01 欢迎来到Vue的世界 概述 Initially released in 2014, Vue.js has experienced rapid adoption, especially in 2018. Vue is a popular framework within the developer community, thanks to its ease of use and flexibility. If you are looking for a great …

Python搭建代理IP池实现存储IP的方法

目录 前言 1. 介绍 2. IP存储方法 2.1 存储到数据库 2.2 存储到文件 2.3 存储到内存 3. 完整代码示例 总结 前言 代理IP池是一种常用的网络爬虫技术&#xff0c;可以用于反爬虫、批量访问目标网站等场景。本文介绍了使用Python搭建代理IP池&#xff0c;并实现IP存储的…

C#中使用正则表达式实现汉字转拼音

目录 一、正则表达式基础 二、实例 1.程序入口Form1.cs 2.类库PinYin.cs 三、生成效果 四、实例中的知识点 1.Regex 2.ToCharArray() 3.IsMatch() 4.GetBytes() 一、正则表达式基础 在C#中使用正则表达式&#xff0c;首先要创建正则表达式对象&#xff0c;正则表达…