容器技术所涉及Linux内核关键技术

容器技术所涉及Linux内核关键技术

一、容器技术前世今生

1.1 1979年 — chroot

  • 容器技术的概念可以追溯到1979年的UNIX chroot。
  • 它是一套“UNIX操作系统”系统,旨在将其root目录及其它子目录变更至文件系统内的新位置,且只接受特定进程的访问。
  • 这项功能的设计目的在于为每个进程提供一套隔离化磁盘空间。
  • 1982年其被添加至BSD当中。

1.2 2000年 — FreeBSD Jails

  • FreeBSD Jails是由Derrick T. Woolworth于2000年在FreeBSD研发协会中构建而成的早期容器技术之一。
  • 这是一套“操作系统”系统,与chroot的定位类似,不过其中包含有其它进程沙箱机制以对文件系统、用户及网络等资源进行隔离。
  • 通过这种方式,它能够为每个Jail、定制化软件安装包乃至配置方案等提供一个对应的IP地址。

1.3 2001年 — Linux VServer

  • Linux VServer属于另一种jail机制,其能够被用于保护计算机系统之上各分区资源的安全(包括文件系统、CPU时间、网络地址以及内存等)。
  • 每个分区被称为一套安全背景(security context),而其中的虚拟化系统则被称为一套虚拟私有服务器。

1.4 2004年 — Solaris容器

  • Solaris容器诞生之时面向x86与SPARC系统架构,其最初亮相于2004年2月的Solaris 10 Build 51 beta当中,随后于2005年正式登陆Solaris 10的完整版本。
  • Solaris容器相当于将系统资源控制与由分区提供的边界加以结合。各分区立足于单一操作系统实例之内以完全隔离的虚拟服务器形式运行。

1.5 2005年 — OpenVZ

  • OpenVZ与Solaris容器非常相似,且使用安装有补丁的Linux内核以实现虚拟化、隔离能力、资源管理以及检查点交付。
  • 每套OpenVZ容器拥有一套隔离化文件系统、用户与用户群组、一套进程树、网络、设备以及IPC对象。

1.6 2006年 — Process容器

  • Process容器于2006年由谷歌公司推出,旨在对一整套进程集合中的资源使用量(包括CPU、内存、磁盘I/O以及网络等等)加以限制、分配与隔离。
  • 此后其被更名为Control Groups(即控制组),从而避免其中的“容器”字眼与Linux内核2.6.24中的另一术语出现冲突。这表明了谷歌公司率先重视容器技术的敏锐眼光以及为其做出的突出贡献。

1.7 2007年 — Control Groups

Control Groups也就是谷歌实现的cgroups,其于2007年被添加至Linux内核当中。

1.8 2008年 — LXC

  • LXC指代的是Linux Containers
  • 是第一套完整的Linux容器管理实现方案。
  • 其功能通过cgroups以及Linux namespaces实现。
  • LXC通过liblxc库进行交付,并提供可与Python3、Python2、Lua、Go、Ruby以及Haskell等语言相对接的API。
  • 相较于其它容器技术,LXC能够在无需任何额外补丁的前提下运行在原版Linux内核之上。

1.9 2011年 — Warden

  • Warden由CloudFoundry公司于2011年所建立,其利用LXC作为初始阶段,随后又将其替换为自家实现方案。
  • 与LXC不同,Warden并不会与Linux紧密耦合。相反,其能够运行在任意能够提供多种隔离环境方式的操作系统之上。Warden以后台进程方式运行并提供API以实现容器管理。

1.10 2013年 — LMCTFY

  • Lmctfy代表的是“Let Me Contain That For You(帮你实现容器化)”。它其实属于谷歌容器技术堆栈的开源版本,负责提供Linux应用程序容器。谷歌公司在该项目的起步阶段宣称其能够提供值得信赖的性能表现、高资源利用率、共享资源机制、充裕的发展空间以及趋近于零的额外资源消耗。
  • 2013年10月lmctfy的首个版本正式推出,谷歌公司在2015年决定将lmctfy的核心概念与抽象机制转化为libcontainer。在失去了主干之后,如今lmctfy已经失去一切积极的发展势头。

Libcontainer项目最初由Docker公司建立,如今已经被归入开放容器基金会的管辖范畴。

1.11 2013年-Docker

  • 在2013年Docker刚发布的时候,它是一款基于LXC的开源容器管理引擎。
  • 把LXC复杂的容器创建与使用方式简化为Docker自己的一套命令体系。
  • 随着Docker的不断发展,它开始有了更为远大的目标,那就是反向定义容器的实现标准,将底层实现都抽象化到Libcontainer的接口。这就意味着,底层容器的实现方式变成了一种可变的方案,无论是使用namespace、cgroups技术抑或是使用systemd等其他方案,只要实现了Libcontainer定义的一组接口,Docker都可以运行。这也为Docker实现全面的跨平台带来了可能。

二、NameSpace

2.1 NameSpace介绍

  • 很多编程语言都包含了命名空间的概念,我们可以认为命名空间是一种封装,封装本身实际上实现了代码的隔离

  • 在操作系统中命名空间命名空间提供的是系统资源的隔离,其中系统资源包括了:进程、网络、文件系统…

  • 实际上linux系统实现命名空间主要目的之一就是为了实现轻量级虚拟化服务,也就是我们说的容器,在同一个命名空间下的进程可以感知彼此的变化,而对其他命名空间的进程一无所知,这样就可以让容器中的进程产生一个错觉,仿佛它自己置身于一个独立的系统环境当中,以此达到独立和隔离的目的。

2.2 Linux系统中NameSpace分类

命名空间描述作用备注
进程命名空间隔离进程IDLinux通过命名空间管理进程号,同一个进程,在不同的命名空间进程号不同进程命名空间是一个父子结构,子空间对于父空间可见
网络命名空间隔离网络设备、协议栈、端口等通过网络命名空间,实现网络隔离docker采用虚拟网络设备,将不同命名空间的网络设备连接到一起
IPC命名空间隔离进程间通信进程间交互方法PID命名空间和IPC命名空间可以组合起来用,同一个IPC名字空间内的进程可以彼此看见,允许进行交互,不同空间进程无法交互
挂载命名空间隔离挂载点隔离文件目录进程运行时可以将挂载点与系统分离,使用这个功能时,我们可以达到 chroot 的功能,而在安全性方面比 chroot 更高
UTS命名空间隔离Hostname和NIS域名让容器拥有独立的主机名和域名,从而让容器看起来像个独立的主机目的是独立出主机名和网络信息服务(NIS)
用户命名空间隔离用户和group ID每个容器内上的用户跟宿主主机上不在一个命名空间同进程 ID 一样,用户 ID 和组 ID 在命名空间内外是不一样的,并且在不同命名空间内可以存在相同的 ID

2.3 NameSpace应用案例

以net namespace为例

  • 在 Linux 中,网络命名空间可以被认为是隔离的拥有单独网络栈(网卡、路由转发表、iptables)的环境。网络命名空间经常用来隔离网络设备和服务,只有拥有同样网络命名空间的设备,才能看到彼此。
  • 从逻辑上说,网络命名空间是网络栈的副本,拥有自己的网络设备、路由选择表、邻接表、Netfilter表、网络套接字、网络procfs条目、网络sysfs条目和其他网络资源。
  • 从系统的角度来看,当通过clone()系统调用创建新进程时,传递标志CLONE_NEWNET将在新进程中创建一个全新的网络命名空间。
  • 从用户的角度来看,我们只需使用工具ip(package is iproute2)来创建一个新的持久网络命名空间。

请添加图片描述

2.3.1 创建net命名空间

创建名称为msb的网络命名空间
# ip netns add msb
查看已创建的网络命名空间
# ip netns ls
msb

2.3.2 删除net命名空间

删除已创建的网络命名空间
# ip netns delete msb

2.3.3 在net命名空间中执行命令

在网络命名空间中执行bash命令,如果想退出,需要使用exit
# ip netns exec msb bash

2.3.4 在net命令空间中执行查看网络连接(网卡)命令

在网络命名空间中查看网络命名空间中的网卡信息
# ip link
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
在Linux主机系统中查看
# ip netns exec msb ip link list
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2.3.5 退出当前的net命名空间

退出已进入的网络命名空间
# exit
exit

2.3.6 在net命名空间中执行多条命令

在网络命名空间中查看路由表
# route -n
Kernel IP routing table
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface
在网络命名空间中查看防火墙规则
# iptables -t nat -nL
Chain PREROUTING (policy ACCEPT)
target     prot opt source               destination         

Chain INPUT (policy ACCEPT)
target     prot opt source               destination         

Chain OUTPUT (policy ACCEPT)
target     prot opt source               destination         

Chain POSTROUTING (policy ACCEPT)
target     prot opt source               destination

2.3.7 创建虚拟网卡

同时创建一对虚拟网卡

创建虚拟网卡对
# ip link add veth0 type veth peer name veth1
在物理机上查看
# ip a s
......
10: veth1@veth0: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether de:44:f8:b7:12:65 brd ff:ff:ff:ff:ff:ff
11: veth0@veth1: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether 46:5e:89:8c:cb:b3 brd ff:ff:ff:ff:ff:ff

2.3.8 迁移虚拟网卡到命名空间中

这两个网卡还都属于“default”或“global”命名空间,和物理网卡一样。把其中一个网卡转移到命名空间msb中。

把创建的veth1网卡添加到msb网络命名空间中
# ip link set veth1 netns msb
在Linux系统命令行查看网络命名空间中的网络
# ip netns exec msb ip link
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
10: veth1@if11: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/ether de:44:f8:b7:12:65 brd ff:ff:ff:ff:ff:ff link-netnsid 0

2.3.9 命名空间中迁出虚拟网卡

在Linux系统命令行把虚拟网卡veth1从网络命名空间删除
# ip netns exec msb ip link delete veth1
在Linux系统命令行查看结果
# ip netns exec msb ip link
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2.3.10 配置虚拟网卡IP地址

再次创建虚拟网卡,添加到msb网络命名空间,并设置IP地址
# ip link add veth0 type veth peer name veth1
# ip link set veth1 netns msb
# ip netns exec msb ip addr add 192.168.50.2/24 dev veth1
在Linux系统命令行查看网络状态
# ip netns exec msb ip addr
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
12: veth1@if13: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether fe:20:ac:a8:13:4c brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet 192.168.50.2/24 scope global veth1
       valid_lft forever preferred_lft forever
启动虚拟网卡,veth1与lo全部要启动
# ip netns exec msb ip link set veth1 up

# ip netns exec msb ip link set lo up
为物理机veth0添加IP地址

# ip a s
......
15: veth0@if14: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group defau
lt qlen 1000
    link/ether 2e:b4:40:c8:73:dc brd ff:ff:ff:ff:ff:ff link-netnsid 0
# ip addr add 192.168.50.3/24 dev veth0

# ip a s veth0
15: veth0@if14: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether 2e:b4:40:c8:73:dc brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet 192.168.50.3/24 scope global veth0
       valid_lft forever preferred_lft forever
# ip link set veth0 up
在宿主机上ping msb中的veth1
# ping 192.168.50.2
PING 192.168.50.2 (192.168.50.2) 56(84) bytes of data.
64 bytes from 192.168.50.2: icmp_seq=1 ttl=64 time=0.102 ms
64 bytes from 192.168.50.2: icmp_seq=2 ttl=64 time=0.068 ms
64 bytes from 192.168.50.2: icmp_seq=3 ttl=64 time=0.068 ms
在msb中的veth1 ping 宿主机上veth0
# ip netns exec msb ping 192.168.50.3
PING 192.168.50.3 (192.168.50.3) 56(84) bytes of data.
64 bytes from 192.168.50.3: icmp_seq=1 ttl=64 time=0.053 ms
64 bytes from 192.168.50.3: icmp_seq=2 ttl=64 time=0.031 ms
64 bytes from 192.168.50.3: icmp_seq=3 ttl=64 time=0.029 ms
如果需要访问本机的其它网段,可手动添加如下默认路由条目。
# ip netns exec msb ip route add default via 192.168.50.3

关于如何ping通外网主机,可设置路由转发完成。

三、CGroups

3.1 CGroups介绍

  • Control groups(cgroups) 控制组

  • linux内核提供的可以限制、记录、隔离进程组所使用的物理资源的机制。为容器而生,没有cgroups就没有今天的容器技术。

请添加图片描述

3.2 CGroups功能

  • 资源限制(Resource Limitation):cgroups 可以对进程组使用的资源总额进行限制。如设定应用运行时使用内存的上限,一旦超过这个配额就发出 OOM(Out of Memory)。
  • 优先级分配(Prioritization):通过分配的 CPU 时间片数量及硬盘 IO 带宽大小,实际上就相当于控制了进程运行的优先级。
  • 资源统计(Accounting): cgroups 可以统计系统的资源使用量,如 CPU 使用时长、内存用量等等,这个功能非常适用于计费。
  • 进程控制(Control):cgroups 可以对进程组执行挂起、恢复等操作。

3.3 CGroups应用案例

3.3.1 安装及开启服务

[root@localhost ~]# yum -y install libcgroup
[root@localhost ~]# systemctl start cgconfig.service 	
[root@localhost ~]# systemctl enable cgconfig.service

3.3.2 限制进程使用CPU

3.3.2.1 查看cpu shares
查看资源限制子系统
[root@localhost ~]# lssubsys
cpuset
cpu,cpuacct
memory
devices
freezer
net_cls,net_prio
blkio
perf_event
hugetlb
pids

查看子系统配置文件所在位置
[root@localhost ~]# ls /sys/fs/cgroup/
blkio  cpuacct      cpuset   freezer  memory   net_cls,net_prio  perf_event  systemd
cpu    cpu,cpuacct  devices  hugetlb  net_cls  net_prio          pids
[root@localhost ~]# ls /sys/fs/cgroup/cpu
cgroup.clone_children  cpuacct.stat          cpu.cfs_quota_us   cpu.stat
cgroup.event_control   cpuacct.usage         cpu.rt_period_us   notify_on_release
cgroup.procs           cpuacct.usage_percpu  cpu.rt_runtime_us  release_agent
cgroup.sane_behavior   cpu.cfs_period_us     cpu.shares         tasks

查看CPU时间分片,用于保证分组所得到的CPU分片总量。
[root@localhost ~]# cat /sys/fs/cgroup/cpu/cpu.shares
1024
3.3.2.2 使用CPU子系统创建2个group分组
[root@localhost ~]# vim /etc/cgconfig.conf
group lesscpu {
	cpu{
		cpu.shares=200;
	}	
}
group morecpu {
	cpu{
		cpu.shares=800;
	}	
}

[root@localhost ~]# systemctl restart cgconfig

准备一个脚本

#!/bin/bash

a=1
while true
do

        a=$[$a+1]
done

将将要运行的应用程序分配到指定分组(请使用单CPU机器,三个终端验证)

终端1# cgexec -g cpu:lesscpu sh /tmp/1.sh

终端2# cgexec -g cpu:morecpu sh /tmp/1.sh

终端3# top

PS: 如果主机有多CPU,为了验证效果,可以进行如下操作

# lscpu
# echo 0 > /sys/devices/system/cpu/cpu0/online
# echo 1 > /sys/devices/system/cpu/cpu1/online

200;
}
}
group morecpu {
cpu{
cpu.shares=800;
}
}

[root@localhost ~]# systemctl restart cgconfig


准备一个脚本

~~~powershell
#!/bin/bash

a=1
while true
do

        a=$[$a+1]
done

将将要运行的应用程序分配到指定分组(请使用单CPU机器,三个终端验证)

终端1# cgexec -g cpu:lesscpu sh /tmp/1.sh

终端2# cgexec -g cpu:morecpu sh /tmp/1.sh

终端3# top

PS: 如果主机有多CPU,为了验证效果,可以进行如下操作

# lscpu
# echo 0 > /sys/devices/system/cpu/cpu0/online
# echo 1 > /sys/devices/system/cpu/cpu1/online

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/941796.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

攻防世界 web view_source

开启场景 右键用不了就 F12 试试&#xff0c;然后看见了 flag cyberpeace{62caa734bc21cc4f9dc97ece9a882cd3}

如何保护你的 iOS 应用免受逆向工程攻击

逆向工程是分析和解构软件以理解其工作原理的过程。针对 iOS 应用&#xff0c;逆向工程通常涉及分析已编译的二进制文件&#xff08;机器可读的代码&#xff09;&#xff0c;并将其转化为更容易被人类理解的形式。这使得攻击者能够检查应用的逻辑、理解数据处理的方式&#xff…

C++进阶(二)--面向对象--继承

目录 一、继承的概念及定义 1.继承的概念 2.继承的定义 定义格式 继承方式和访问限定符 继承基类成员访问⽅式的变化 3.继承类模板 二、基类和派生类对象赋值转换 三、继承中的作用域 四、派⽣类的默认成员函数 五、继承与友元 六、继承与静态成员 七、多继承及其…

STM32串口第一次接收数据时第一个字节丢失的问题

解决方法&#xff1a;开启中断之前&#xff0c;先清除标志位【1】。 串口清除标志位&#xff1a; __HAL_UART_CLEAR_PEFLAG(&huart1); HAL_UART_Receive_IT(&huart1,&RxUart, 1); 定时器清除标志位&#xff1a; __HAL_TIM_CLEAR_FLAG(&htim3,TIM_FLAG_UPDATE);…

为什么要用云电脑玩游戏?5大好处揭秘,ToDesk云机性能强又易用

电脑在人们日常的工作与生活中无疑是颇为重要的。无论是学生撰写论文报告、企业白领处理数据图形等事项&#xff0c;还是游戏迷、影视迷们畅玩游戏或观看视频都难免要经常用到。拥有一台性能配置优质并且内置软件全面的电脑&#xff0c;对各类群体来说都大有益处&#xff0c;尤…

深入理解批量归一化(BN):原理、缺陷与跨小批量归一化(CBN)

在训练深度神经网络时&#xff0c;批量归一化&#xff08;Batch Normalization&#xff0c;简称BN&#xff09;是一种常用且有效的技术&#xff0c;它帮助解决了深度学习中训练过程中的梯度消失、梯度爆炸和训练不稳定等。然而&#xff0c;BN也有一些局限性&#xff0c;特别是在…

iptables交叉编译(Hisiav300平台)

参考文章&#xff1a;https://blog.csdn.net/Bgm_Nilbb/article/details/135714738 https://bbs.archlinux.org/viewtopic.php?pid1701065 1、libmnl 交叉编译 tar xvf libmnl-1.0.5.tar.bz2 sudo chmod 777 -R libmnl-1.0.5 cd libmnl-1.0.5 mkdir _install //host和CC需要修…

redis数据类型:list

数据结构 源码版本&#xff1a;7.2.2路径&#xff1a;src/adlist.h 关于list的 头文件中涉及到的这三个结构体如下 /* Node, List, and Iterator are the only data structures used currently. */ # 节点 typedef struct listNode {struct listNode *prev; # 前元素的指针s…

达梦8数据库备份与还原

通过命令找到达梦数据库进程所在位置 ps -ef | grep dm 得到达梦相关进程 pwd 进程ID得到进程目录 [rootdmdb01 bin]# pwd /data/dmdbms/bin [rootdmdb01 bin]# ps -ef | grep dm root 1183 2 0 Nov04 ? 00:00:33 [kworker/8:1H-xfs-log/dm-0] root …

电气设计 | 低压接地系统:TN-C 、TN-S、TN-C-S、TT适用哪些场所?

电气设计 | 低压接地系统&#xff1a;TN-C 、TN-S、TN-C-S、TT适用哪些场所&#xff1f; 1、低压配电系统简介2、各种低压配电系统介绍2.1、TN-C系统2.2、TN-S系统2.3、TN-C-S 系统2.4、TT 系统2.5、IT 系统 1、低压配电系统简介 低压配电系统有TN-C、TN-S、TN-C-S、TT和IT五种…

重温设计模式--组合模式

文章目录 1 、组合模式&#xff08;Composite Pattern&#xff09;概述2. 组合模式的结构3. C 代码示例4. C示例代码25 .应用场景 1 、组合模式&#xff08;Composite Pattern&#xff09;概述 定义&#xff1a;组合模式是一种结构型设计模式&#xff0c;它允许你将对象组合成…

漏洞检测工具:Swagger UI敏感信息泄露

Swagger UI敏感信息泄露 漏洞定义 Swagger UI是一个交互式的、可视化的RESTful API文档工具&#xff0c;它允许开发人员快速浏览、测试API接口。Swagger UI通过读取由Swagger&#xff08;也称为OpenAPI&#xff09;规范定义的API描述文件&#xff08;如swagger.json或swagger…

Linux下学【MySQL】表中插入和查询的进阶操作(配实操图和SQL语句通俗易懂)

绪论​ 每日激励&#xff1a;挫折是会让我们变得越来越强大的重点是我们敢于积极的面对它。—Jack叔叔 绪论​&#xff1a; 本章是表操作的进阶篇章&#xff08;没看过入门的这里是传送门&#xff0c;本章将带你进阶的去学习表的插入insert和查找select&#xff0c;本质也就是…

JavaScript 标准内置对象——Object

1、构造函数 2、静态方法 // 将源对象中所有可枚举的自有属性复制到目标对象&#xff0c;&#xff0c;并返回修改后的目标对象 Object.assign(target, ...sources) Object.create(proto, propertiesObject) // 以一个现有对象作为原型&#xff0c;创建一个新对象Object.defineP…

Robot Framework搭建自动化测试框架

1.配置环境 需要安装jdk8&#xff0c;andrid sdk&#xff08;安装adb&#xff09;&#xff0c;pycharm编译环境以及软件 安装Robot Framework 首先&#xff0c;你需要安装Robot Framework&#xff0c;可以使用 pip 进行安装&#xff1a; pip install robotframework安装所需的…

fastjson诡异报错

1、环境以及报错描述 1.1 环境 操作系统为中标麒麟、cpu 为国产鲲鹏服务器。 jdk为openjdk version 1.8.0._242 1.2 错误 com.alibaba.fastjson2.JSONException: syntax error : f at com.alibaba.fastjson2.JSONReaderUTF16.readBoolValue(JSONReaderUTF16.java:6424) at c…

Unity3d 基于UGUI和VideoPlayer 实现一个多功能视频播放器功能(含源码)

前言 随着Unity3d引擎在数字沙盘、智慧工厂、数字孪生等场景的广泛应用&#xff0c;视频已成为系统程序中展示时&#xff0c;不可或缺的一部分。在 Unity3d 中&#xff0c;我们可以通过强大的 VideoPlayer 组件和灵活的 UGUI 系统&#xff0c;将视频播放功能无缝集成到用户界面…

蓝牙协议——音乐启停控制

手机播放音乐 手机暂停音乐 耳机播放音乐 耳机暂停音乐

【EthIf-13】EthIfGeneral容器配置-01

1.EthIfGeneral类图结构 下面是EthIfGeneral配置参数的类图&#xff0c;比较重要的参数就是配置&#xff1a; 接收中断是否打开发送确认中断是否打开EthIf轮询周期 1.EthIfGeneral参数的含义

如何看待2024年诺贝尔物理学奖颁给了机器学习与神经网络?

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///C爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于2024年诺贝尔物理学奖颁给了机器学习与神…