粒子群优化pso结合bp神经网络优化对csv文件预测matlab(3)

1.csv数据为密西西比数据集,获取数据集可以管我要,数据集内容形式如下图:

2.代码

这里参考的是b站的一位博主。

数据集导入教程在我的另一篇文章bp写过,需要的话可以去看一下

psobp.m

close all
clc

%读取数据
input=X;
output=Y;%10000行1列
%设置训练数据与测试数据
input_train=input(1:8000,:)';
output_train=output(1:8000,:)';
input_test=input(8001:10000,:)';
output_test=output(8001:10000,:)';%2000列1行
%节点个数
inputnum=26;%输入层节点数量
hiddennum=12;%隐藏层节点数量
outputnum=1;%输出层节点数量
w1num=inputnum*hiddennum;%输入层到隐藏层的权值个数
w2num=outputnum*hiddennum;%输出层到隐藏层的权值个数
N=w1num+hiddennum+w2num+outputnum;%待优化的变量个数
%训练数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%%定义pso算法参数
E0=0.001;%允许误差
MaxNum=10;%粒子最大迭代次数
narvs=N;%目标函数的子变量个数
particlesize=10;%粒子群规模
c1=2;%个体经验学习因子
c2=2;%社会经验学习因子
w=0.6;%惯性因子
vmax=0.8;%粒子最大飞行速度
x=-5+10*rand(particlesize,narvs);%粒子所在位置,规模是粒子群数和参数需求数设置x的取值范围[-5,5]
v=2*rand(particlesize,narvs);%粒子飞行速度,生成每个粒子飞行速度,只有一个变量,所以速度是一维的
trace=zeros(N+1,MaxNum);%寻优结果的初始值
objv=objfun(x,input_train,output_train,input_test,output_test);%计算目标函数值
personalbest_x=x;%用于存储个体最优,存储每个粒子经历的x值
personalbest_faval=objv;%存储个体最优的y,每个个体的误差的群体
[globalbest_faval,i]=min(personalbest_faval);
globalbest_x=personalbest_x(i,:);%全局最优的x
k=1;%开始迭代
while k<=MaxNum
    objv=objfun(x,input_train,output_train,input_test,output_test);
    for i=1:particlesize
        if objv(i)<personalbest_faval(i)
            personalbest_faval(i)=objv(i);%将第i个粒子作为个体最优解
            personalbest_x(i,:)=x(i,:);%更新最优解位置
        end
    end
    [globalbest_favalN,i]=min(personalbest_faval);
    globalbest_xn=personalbest_x(i,:);
    trace(1:N,k)=globalbest_xn;%每代最优x值
    trace(end,k)=globalbest_favalN;
    %%粒子更新
    for i=1:particlesize
        v(i,:)=w*v(i,:)+c1*rand*(personalbest_x(i,:)-x(i,:))+c2*rand*(globalbest_x-x(i,:));
        %rand会随机生成一个(0,1)的随机降低学习因子的比例
        for j=1:narvs%确定每个变量的速度,不超过最大速度
            if v(i,j)>vmax
                v(i,j)=vmax;
            elseif v(i,j)<-vmax
                v(i,j)=-vmax;
            end
        end
        x(i,:)=x(i,:)+v(i,:);
    end
    globalbest_faval=globalbest_favalN;
    globalbest_x=globalbest_xn;
    k=k+1;
end
%%画图
figure(1);
plot(1:MaxNum,trace(end,:));
grid on;
xlabel('遗传代数');
ylabel('误差变化');
title('进化过程');

objfun.m

function [obj,T_sim]=objfun(X,input_train,output_train,input_test,output_test)
%%分别求解种群每个个体的目标值
%输入
%x:所有个体的初始权值与阈值
%input_train:训练样本输入
%output_train:训练样本输出
%hiddennum:隐藏神经元个数
%input_test:测试样本输入
%output_test:测试样本输出
%%输出
%obj:所有个体的预测样本的预测误差的范数,让这个误差最小,也就是每一个种群全都累加变成一个数,这里有10个种群,就是10个数
[M,N]=size(X);%返回一个M行N列的矩阵
obj=zeros(M,1);%所有个体误差初始化为M行1列也就是前面的粒子群规模,就是10行1列
T_sim=zeros(M,2000);%size(output_test,2)返回output_test的列数也就是2000个结果,也就是预测值是10行2000列的数值
for i=1:M
    [obj(i),T_sim(i,:)]=BpFunction(X(i,:),input_train,output_train,input_test,output_test);
end
T_sim=T_sim';
end

BpFunction.m

%%输入
function [err,T_sim]=BpFunction(x,input_train,output_train,input_test,output_test)
inputnum=26;%输入层节点数量
hiddennum=12;%隐藏层节点数量
outputnum=1;%输出层节点数量
%%数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
[outputn,outputps]=mapminmax(output_train,0,1);

%bp神经网络
net=newff(inputn,outputn,hiddennum);
%网络参数配置
net.trainParam.epochs=30;
net.trainParam.lr=0.001;
net.trainParam.goal=0.0001;
w1num=inputnum*hiddennum;%输入层到隐藏层的权值个数
w2num=outputnum*hiddennum;%输出层到隐藏层的权值个数
W1=x(1:w1num);
B1=x(w1num+1:w1num+hiddennum);
W2=x(w1num+hiddennum+1:w1num+hiddennum+w2num);
B2=x(w1num+hiddennum+w2num+1:w1num+hiddennum+w2num+outputnum);
net.iw{1,1}=reshape(W1,hiddennum,inputnum);
net.lw{2,1}=reshape(W2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=reshape(B2,outputnum,1);
%%开始训练
%网络训练
net=train(net,inputn,outputn);
%%测试网络
t_sim=sim(net,input_test);
T_sim=mapminmax('reverse',t_sim,outputps);
err=norm(T_sim-output_test);
end

3.结果

4.优化之前

5.之所以上面有拟合差别大的地方在于bp网络自动将数据集中某一列全是一个数的给消去了,不知是系统消去的还是神经网络给消掉的。所以他会报错:

net.IW{1,1} must be a 12-by-8 matrix.

报这个错误的解决办法我是将某一列中第一行数据加个0.1。虽然是个解决办法,但是会影响到识别精度。所以不是个好办法。

1.1粒子群算法基础

Pso算法是从随机解出发,通过迭代寻找最优解,通过适应度来评价解的品质,但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”和“变异”操作,它是通过追随当前搜索到的最优值来寻找全局最优。

1.2基本原理

Pso算法起源对简单社会的模拟,具有很好的生物社会背景。Pso中每个优化问题的潜在解都是搜索空间的一只鸟,称之为粒子。所有的粒子都有一个由被优化的函数决定的适应值,每个粒子还有一个速度决定他们”飞行“的方向和距离。然后粒子就追随当前的最优粒子在解空间中搜索。设想这样一个场景:鸟群在森林中随机搜索食物,它们想要找到食物量最多的位置。但是所有的鸟都不知道食物具体在哪个位置,只能感受到食物大概在哪个方向。每只鸟沿着自己判定的方向进行搜索,并在搜索的过程中记录自己曾经找到过食物且量最多的位置,同时所有的鸟都共享自己每一次发现食物的位置以及食物的量,这样鸟群就知道当前在哪个位置食物的量最多。在搜索的过程中每只鸟都会根据自己记忆中食物量最多的位置和当前鸟群记录的食物量最多的位置调整自己接下来搜索的方向。鸟群经过一段时间的搜索后就可以找到森林中哪个位置的食物量最多(全局最优解)。

(1)PSO的基础:信息的社会共享

(2)粒子的两个属性:速度和位置(算法的两个核心要素)

速度表示粒子下一步迭代时移动的方向和距离,位置是所求解问题的一个解。

算法的6个重要参数

假设在D维搜索空间中,有N个粒子,每个粒子代表一个解,则:

① 第i个粒子的位置为:

② 第 i个粒子的速度(粒子移动的距离和方向)为:

③ 第 i个粒子搜索到的最优位置(个体最优解)为:

④ 群体搜索到的最优位置(群体最优解)为:

⑤ 第 i个粒子搜索到的最优位置的适应值(优化目标函数的值)为:

——个体历史最优适应值

⑥ 群体搜索到的最优位置的适应值为:

——群体历史最优适应值

1.3粒子群算法的流程图

1.4粒子群算法的伪代码

1.5速度更新公式

表述上叫速度,实际上就是粒子下一步迭代移动的距离和方向,也就是一个位置向量。

(1)速度更新公式的解释

① 第一项:惯性部分

由惯性权重和粒子自身速度构成,表示粒子对先前自身运动状态的信任。

② 第二项:认知部分

表示粒子本身的思考,即粒子自己经验的部分,可理解为粒子当前位置与自身历史最优位置之间的距离和方向。

③ 第三项:社会部分

表示粒子之间的信息共享与合作,即来源于群体中其他优秀粒子的经验,可理解为粒子当前位置与群体历史最优位置之间的距离和方向。

(2)速度更新公式的参数定义

(3)速度的方向

粒子下一步迭代的移动方向 = 惯性方向 + 个体最优方向 + 群体最优方向

1.6、位置更新公式

上一步的位置 + 下一步的速度

1.7算法参数的详细解释

  1. 粒子群规模: N

一个正整数,推荐取值范围:[20,1000],简单问题一般取20~40,较难或特定类别的问题可以取100~200。较小的种群规模容易陷入局部最优;较大的种群规模可以提高收敛性,更快找到全局最优解,但是相应地每次迭代的计算量也会增大;当种群规模增大至一定水平时,再增大将不再有显著的作用。

(2)粒子维度: D

粒子搜索的空间维数即为自变量的个数。

(3)迭代次数: K

推荐取值范围:[50,100],典型取值:60、70、100;这需要在优化的过程中根据实际情况进行调整,迭代次数太小的话解不稳定,太大的话非常耗时,没有必要。

(4)惯性权重:w

1998年,Yuhui Shi和Russell Eberhart对基本粒子群算法引入了惯性权重(inertia weight)w,并提出动态调整惯性权重以平衡收敛的全局性和收敛速度,该算法被称为标准PSO算法。

参数意义

惯性权重w表示上一代粒子的速度对当代粒子的速度的影响,或者说粒子对当前自身运动状态的信任程度,粒子依据自身的速度进行惯性运动。惯性权重使粒子保持运动的惯性和搜索扩展空间的趋势。w值越大,探索新区域的能力越强,全局寻优能力越强,但是局部寻优能力越弱。反之,全局寻优能力越弱,局部寻优能力强。较大的w有利于全局搜索,跳出局部极值,不至于陷入局部最优;而较小的w有利于局部搜索,让算法快速收敛到最优解。当问题空间较大时,为了在搜索速度和搜索精度之间达到平衡,通常做法是使算法在前期有较高的全局搜索能力以得到合适的种子,而在后期有较高的局部搜索能力以提高收敛精度,所以w不宜为一个固定的常数[3]。

当w=1时,退化成基本粒子群算法,当 w=0 时,失去对粒子本身经验的思考。推荐取值范围:[0.4,2],典型取值:0.9、1.2、1.5、1.8

改善惯性权重w

在解决实际优化问题时,往往希望先采用全局搜索,使搜索空间快速收敛于某一区域,然后采用局部精细搜索以获得高精度的解。因此提出了自适应调整的策略,即随着迭代的进行,线性地减小w的值。这里提供一个简单常用的方法——线性变化策略:随着迭代次数的增加,惯性权重w不断减小,从而使得粒子群算法在初期具有较强的全局收敛能力,在后期具有较强的局部收敛能力。

(5)学习因子: c1,c2

也称为加速系数或加速因子(这两个称呼更加形象地表达了这两个系数的作用)

c1 表示粒子下一步动作来源于自身经验部分所占的权重,将粒子推向个体最优位置 

的加速权重;

c2表示粒子下一步动作来源于其它粒子经验部分所占的权重,将粒子推向群体最优位置

的加速权重;

c1=0:无私型粒子群算法,"只有社会,没有自我",迅速丧失群体多样性,易陷入局部最优而无法跳出;

c2=0:自我认知型粒子群算法,"只有自我,没有社会",完全没有信息的社会共享,导致算法收敛速度缓慢;

c1,c2都不为0:完全型粒子群算法,更容易保持收敛速度和搜索效果的均衡,是较好的选择。

低的值使粒子在目标区域外徘徊,而高的值导致粒子越过目标区域。 推荐取值范围:[0,4];典型取值:c1=c2=2、c1=1.6和 c2=1.8 、c1=1.6和 c2=2 ,针对不同的问题有不同的取值,一般通过在一个区间内试凑来调整这两个值。

1.8算法的一些重要概念和技巧

(1)适应值(fitness values)

即优化目标函数的值,用来评价粒子位置的好坏程度,决定是否更新粒子个体的历史最优位置和群体的历史最优位置,保证粒子朝着最优解的方向搜索。

(2)位置限制

限制粒子搜索的空间,即自变量的取值范围,对于无约束问题此处可以省略。

(3)速度限制

为了平衡算法的探索能力与开发能力,需要设定一个合理的速度范围,限制粒子的最大速度 vmax ,即粒子下一步迭代可以移动的最大距离。

1.9代码

clc

clear

close all

E=0.000001;

maxnum=800;%最大迭代次数

narvs=2;%目标函数的自变量个数

particlesize=50;%粒子群规模

c1=2;%每个粒子的个体学习因子,加速度常数

c2=2;%每个粒子的社会学习因子,加速度常数

w=0.6;%惯性因子

vmax=5;%粒子的最大飞翔速度

v=2*rand(particlesize,narvs);%粒子飞翔速度

x=-300+600*rand(particlesize,narvs);%粒子所在位置

%定义适应度函数

fitness=inline('(x(1)^2+x(2)^2)/10000','x');

for i=1:particlesize

f(i)=fitness(x(i,:));

end

personalbest_x=x;

personalbest_faval=f;

[globalbest_faval,i]=min(personalbest_faval);

globalbest_x=personalbest_x(i,:);

k=1;

while (k<=maxnum)

for i=1:particlesize

f(i)=fitness(x(i,:));

if f(i)<personalbest_faval(i)

personalbest_faval(i)=f(i);

personalbest_x(i,:)=x(i,:);

end

end

[globalbest_faval,i]=min(personalbest_faval);

globalbest_x=personalbest_x(i,:);

for i=1:particlesize

v(i,:)=w*v(i,:)+c1*rand*(personalbest_x(i,:)-x(i,:))...

+c2*rand*(globalbest_x-x(i,:));

for j=1:narvs

if v(i,j)>vmax

v(i,j)=vmax;

elseif v(i,j)<-vmax

v(i,j)=-vmax;

            end

end

x(i,:)=x(i,:)+v(i,:);

 

    end

    ff(k)=globalbest_faval;

    if globalbest_faval<E

        break

    end

%       figure(1)

%       for i= 1:particlesize

%       plot(x(i,1),x(i,2),'*')

%       end

k=k+1;

end

xbest=globalbest_x;

figure(2)

set(gcf,'color','white');

plot(1:length(ff),ff)



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/287733.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

无边界支付:数字货币如何改变跨境电商?

在全球数字化的浪潮中&#xff0c;数字货币的崛起成为跨境电商领域的一场革命。本文将深入探讨数字货币如何重新定义支付体系&#xff0c;对跨境电商带来的影响以及未来可能的发展方向。 数字货币的崛起 随着比特币等数字货币的逐渐走俏&#xff0c;传统支付体系的边界逐渐被打…

c语言结构体学习上篇

文章目录 前言一、结构体的声明1&#xff0c;什么叫结构体?2&#xff0c;结构体的类型3,结构体变量的创建和初始化4&#xff0c;结构体的类型5&#xff0c;结构体的初始化 二、结构体的访问1&#xff0c;结构体成员的点操作符访问2&#xff0c;结构体体成员的指针访问 前言 昨…

基于RetinaFace+Jetson Nano的智能门锁系统——第二篇(配置环境)

文章目录 设备一、安装远程登录终端Xshell1.1下载Xshell1.2新建回话1.3查询ip地址1.4启动连接 二、安装远程文件管理WinScp2.1下载WinScp2.2连接Jetson Nano2.3连接成功 三、安装远程桌面VNC Viewer3.1下载VNC Viewer3.2在Jetson Nano安装VNC Viewer3.3设置VINO登录选项3.4将网…

工具变量-ESG基金持股数据集(2008-2022年)

一、数据介绍 数据名称&#xff1a;工具变量-ESG基金持股数据 数据范围&#xff1a;A股上市公司 数据年份&#xff1a;2008-2022年 样本数量&#xff1a;41621条 数据来源&#xff1a;中国责任投资年度报告、上市公司年报 数据整理&#xff1a;自主整理 二、参考文献 […

C#中字母与ASCⅡ码的转换

目录 一、关于ASCⅡ及与字符互转 1.主要用到Encoding对象的GetBytes方法 2.Char显式转换为数值类型得到ASCⅡ 二、实例 三、生成效果 四、程序中的一些知识点 1.IsLetterOrDigit() 2.GetBytes() 3.TryParse(string, out int) 一、关于ASCⅡ及与字符互转 ASCⅡ(Americ…

【SpringBoot3】1.SpringBoot入门的第一个完整小项目(新手保姆版+教会打包)

目录 1 SpringBoot简单介绍1.1 SpringBoot是什么1.2 主要优点1.3 术语1.3.1 starter&#xff08;场景启动器&#xff09; 1.4 官方文档 2 环境说明3 实现代码3.1 新建工程与模块3.2 加入依赖3.3 主程序文件3.4 业务代码3.5 运行测试3.6 部署打包3.7 命令行运行 1 SpringBoot简单…

YoloV7改进策略:AAAI 2024 最新的轴向注意力|即插即用,改进首选|全网首发,包含数据集和代码,开箱即用!

摘要 https://arxiv.org/pdf/2312.08866.pdf 本文提出了一种名为Multi-scale Cross-axis Attention(MCA)的方法,用于解决医学图像分割中的多尺度信息和长距离依赖性问题。该方法基于高效轴向注意力,通过计算两个平行轴向注意力之间的双向交叉注意力,更好地捕获全局信息。…

Windows安装部署nginx

1、官网下载安装包&#xff1a; 官网地址&#xff1a;https://nginx.org/en/download.html 下载好后&#xff0c;解压即可&#xff1a; 在nginx的配置文件是conf目录下的nginx.conf&#xff0c;默认配置的nginx监听的端口为80&#xff0c;如果本地80端口已经被使用则修改成其…

强大的Git客户端 GitKraken 中文 for Mac

GitKraken提供了直观的图形化界面&#xff0c;让用户可以轻松地进行版本控制操作&#xff0c;而无需使用命令行界面。您可以通过可视化的工作区、分支图和提交历史&#xff0c;更清晰地了解代码的状态和演变。 跨平台支持&#xff1a;GitKraken可在多个操作系统上运行&#xf…

k8s之Pod的基础(上)

什么是pod&#xff1f; pod是k8s中最小的资源管理组件 pod也是最小运行容器化的应用的资源管理对象 pod是一个抽象的概念&#xff0c;可以理解为一个或者多个容器化应用的集合 在一个pod当中运行一个容器时最常用的方式 在一个pod当中同时运行多个容器&#xff0c;在一个po…

Docker之镜像上传和下载

目录 1.镜像上传 1) 先上百度搜索阿里云 点击以下图片网站 2) 进行登录/注册 3) 使用支付宝...登录 4) 登录后会跳转到首页->点击控制台 5) 点击左上角的三横杠 6) 搜索容器镜像关键词->点击箭头所指 ​ 编辑 7) 进入之后点击实例列表 8) 点击个人实例进入我们的一个…

凯越510X ADV欧洲上市,售价5.5万

凯越510X其实并不是一台新车&#xff0c;就是国内上市的双摇臂版本的525X&#xff0c;国内售价33900元&#xff0c;不过国外上市只有一个色&#xff0c;就是下方蓝黑灰的颜色&#xff0c;这个配色方案感觉还不错。 凯越525X作为国产中量级ADV3剑客&#xff0c;口碑销量一直都是…

Linux | 分布式版本控制工具Git【版本管理 + 远程仓库克隆】

文章目录 一、前言二、有关git的相关历史介绍三、Git版本管理1、感性理解 —— 大学生实验报告2、程序员与产品经理3、张三的CEO之路 —— 版本管理工具的诞生 四、如何在Linux上使用Git1、创建仓库2、将仓库克隆到本地3、git三板斧① git add② git commit③ git push 4、有关…

放弃努力必然下滑的2024

知道和做到&#xff0c;这其中有一道鸿沟。 努力不一定会成功&#xff0c;但是不努力连成功的概率都不会有。 问题 之前有朋友看过我的一些博文&#xff0c;问:"我如果不坚持写&#xff0c;仅靠存量能否维持一段时间&#xff1f;" "我如果不坚持写&#xff0c…

生态系统服务构建生态安全格局中的实践技术应用

生态安全是指生态系统的健康和完整情况。生态安全的内涵可以归纳为&#xff1a;一&#xff0c;保持生态系统活力和内外部组分、结构的稳定与持续性&#xff1b;二&#xff0c;维持生态系统生态功能的完整性&#xff1b;三&#xff0c;面临外来不利因素时&#xff0c;生态系统具…

3 - 字段约束|MySQL索引|MySQL用户管理

字段约束&#xff5c;MySQL索引&#xff5c;MySQL用户管理 字段约束主键外键 MySQL索引索引介绍优缺点索引使用规则索引的分类索引的管理 用户管理用户授权权限撤销 用户权限追加user表的使用 字段约束 设置在表头上&#xff0c;用来限制字段赋值 包括&#xff1a; 是否允许给…

Edge浏览器的卸载(一分钟版)

一分钟看完不耽误 开整工具下载后 结尾 开整 工具 Remove-MS-Edge 看名字&#xff0c;简单直接 CSDN下载 资源设置是免费的&#xff0c;大家尽管下载 不放心软件安全的话&#xff0c;自己上github地址下载也行 下载后 解压之后 我们打开有gui的&#xff0c;也就是有界面的&…

深度学习MLP_实战演练使用感知机用于感情识别_keras

目录 &#xff08;1&#xff09;why deep learning is game changing?&#xff08;2&#xff09;it all started with a neuron&#xff08;3&#xff09;Perceptron&#xff08;4&#xff09;Perceptron for Binary Classification&#xff08;5&#xff09;put it all toget…

webpack 5 loader

webpack 本身不能识别js&#xff0c;json外的资源&#xff0c;所以我们需要借助其他loader来处理对应的文件 CSS Loader&#xff0c;处理css 安装 npm i css-loader style-loader -D css-loader 负责讲css编译成webpack能识别的模块内容style-loader 动态创建<style&g…

基于SSM的社区管理系统论文

目 录 目 录 I 摘 要 III ABSTRACT IV 1 绪论 1 1.1 课题背景 1 1.2 研究现状 1 1.3 研究内容 2 2 系统开发环境 3 2.1 vue技术 3 2.2 JAVA技术 3 2.3 MYSQL数据库 3 2.4 B/S结构 4 2.5 SSM框架技术 4 3 系统分析 5 3.1 可行性分析 5 3.1.1 技术可行性 5 3.1.2 操作可行性 5 3…