Bulbea助力实现股票的深度学习量化

大家好,Bulbea 是一个基于深度学习开发的,用于股票市场预测和建模的Python库。Bulbea 自带了不少可用于股票深度学习训练及测试的API,并且易于对数据进行扩展和延申,构建属于我们自己的数据及模型。

1.Bulbea基本使用方法

Bulbea 和普通的深度学习研究项目一样,在做训练和测试时,分为四步(加载数据,预处理,建模,测试)。

1.1 加载数据

Bulbea内置了数据下载模块,让你很轻易地能够下载雅虎财经的股票数据,比如下面下载雅虎财经源的GOOGL股票数据:

>>> import bulbea as bb
>>> share = bb.Share('YAHOO', 'GOOGL')
>>> share.data
# Open High Low Close Volume \
# Date
# 2004-08-19 99.999999 104.059999 95.959998 100.339998 44659000.0
# 2004-08-20 101.010005 109.079998 100.500002 108.310002 22834300.0
# 2004-08-23 110.750003 113.479998 109.049999 109.399998 18256100.0
# 2004-08-24 111.239999 111.599998 103.570003 104.870002 15247300.0
# 2004-08-25 104.960000 108.000002 103.880003 106.000005 9188600.0
...

1.2 预处理

Bulbea 同样也内置了预处理模块,让你能够轻易地分割训练集和测试集:

>>> from bulbea.learn.evaluation import split
>>> Xtrain, Xtest, ytrain, ytest = split(share, 'Close', normalize = True)

1.3 建模

Bulbea自带了RNN模型可供使用:

>>> import numpy as np
>>> Xtrain = np.reshape(Xtrain, (Xtrain.shape[0], Xtrain.shape[1], 1))
>>> Xtest = np.reshape( Xtest, ( Xtest.shape[0], Xtest.shape[1], 1))

>>> from bulbea.learn.models import RNN
>>> rnn = RNN([1, 100, 100, 1]) # number of neurons in each layer
>>> rnn.fit(Xtrain, ytrain)
# Epoch 1/10
# 1877/1877 [==============================] - 6s - loss: 0.0039
# Epoch 2/10
# 1877/1877 [==============================] - 6s - loss: 0.0019
...

1.4 测试

通过调用sklearn的metrics就能对数据实现测试:

>>> from sklearn.metrics import mean_squared_error
>>> p = rnn.predict(Xtest)
>>> mean_squared_error(ytest, p)
0.00042927869370525931
>>> import matplotlib.pyplot as pplt
>>> pplt.plot(ytest)
>>> pplt.plot(p)
>>> pplt.show()

2.情感分析

Bulbea 能自动爬取相关股票在推特上的文字,并对这些文字做一个情感分析。

只需要给Bulbea提供以下环境变量就能够进行感情色彩分析:

export BULBEA_TWITTER_API_KEY="<YOUR_TWITTER_API_KEY>"
export BULBEA_TWITTER_API_SECRET="<YOUR_TWITTER_API_SECRET>"

export BULBEA_TWITTER_ACCESS_TOKEN="<YOUR_TWITTER_ACCESS_TOKEN>"
export BULBEA_TWITTER_ACCESS_TOKEN_SECRET="<YOUR_TWITTER_ACCESS_TOKEN_SECRET>"

测试一下:

>>> import bulbea as bb
>>> share = bb.Share('YAHOO', 'GOOGL')
>>> bb.sentiment(share)
0.07580128205128206

由于较为粗略,这个分析仅供参考,如果喜欢今天的量化投资内容,请持续关注。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/285767.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Redis的集群模式:主从 哨兵 分片集群

基于Redis集群解决单机Redis存在的问题&#xff0c;在之前学Redis一直都是单节点部署 单机或单节点Redis存在的四大问题&#xff1a; 数据丢失问题&#xff1a;Redis是内存存储&#xff0c;服务重启可能会丢失数据 > 利用Redis数据持久化的功能将数据写入磁盘并发能力问题…

Ant Design Vue 编译后的网页特点是什么,怎么确认他是用的前端 Ant Design Vue 技术栈的呢?

Ant Design Vue 是一个前端 UI 框架&#xff0c;使用 Vue.js 构建。它包含了大量的预设样式和组件&#xff0c;如按钮、表单、表格等&#xff0c;可以帮助开发者快速构建出优雅且功能丰富的网页。但是&#xff0c;要确定一个编译后的网页是否使用了 Ant Design Vue&#xff0c;…

【代数学作业1完整版-python实现GNFS一般数域筛】构造特定的整系数不可约多项式:涉及素数、模运算和优化问题

代数学作业1-完整版&#xff1a;python实现GNFS一般数域筛 写在最前面背景在GNFS算法中选择互质多项式时&#xff0c;需要考虑哪些关键因素&#xff0c;它们对算法的整体运行时间有何影响? 练习1题目题目分析Kleinjung方法简介通用数域筛法&#xff08;GNFS&#xff09;中的多…

数据结构与算法——符号表API设计及有序符号表设计

Java学习手册面试指南&#xff1a;https://javaxiaobear.cn 符号表最主要的目的就是将一个键和一个值联系起来&#xff0c;符号表能够将存储的数据元素是一个键和一个值共同组成的键值对数据&#xff0c;我们可以根据键来查找对应的值。 符号表中&#xff0c;键具有唯一性。 符…

找区间内的可逆素数个数

1.答案 #include<stdio.h> #include<string.h> #include<math.h> int is_prime(int n); int nixu(int n);int main() {int t0,m, n, i;scanf("%d %d", &m, &n);for (i m; i < n; i){if (is_prime(nixu(i)) 1 && is_prime(i)…

Go语言基础简单了解

文章目录 前言关于Go学习流程 基础语法注释变量常量数据类型运算符fmt库 流程控制if、switch、selectfor、break、continue遍历String 函数值传递和引用传递deferinit匿名、回调、闭包函数 数组和切片Map结构体自定义数据类型接口协程和channel线程锁异常处理泛型文件读取文件写…

不知道怎么使用IDEA,一篇文章带你快速上手

前言 IDEA 是由 JetBrains 公司开发的软件产品&#xff0c;全称为 IntelliJ IDEA&#xff0c;一个 Java 语言的集成开发环境。它 —— 在业界被公认为是最好的 Java 开发工具之一&#xff0c;尤其在智能代码助手、代码自动提示、重构、J2EE 支持、Ant、JUnit、CVS 整合、代码审…

数据结构--队列【详解】~(˶‾᷄ꈊ‾᷅˵)~

目录 队列定义&#xff1a; 队列的声明与头文件的包含&#xff1a; 队列的声明&#xff1a; 头文件的包含&#xff1a; 队列的基本操作: 初始化队列 : 摧毁队列&#xff1a; 入队列&#xff1a; 出队列&#xff1a; 返回队头数据&#xff1a; 返回队尾数据&#xff1…

如何使用Docker部署Swagger Editor结合内网穿透实现远程编辑API文档

文章目录 Swagger Editor本地接口文档公网远程访问1. 部署Swagger Editor2. Linux安装Cpolar3. 配置Swagger Editor公网地址4. 远程访问Swagger Editor5. 固定Swagger Editor公网地址 Swagger Editor本地接口文档公网远程访问 Swagger Editor是一个用于编写OpenAPI规范的开源编…

Sectigo怎么把多个网站地址改为https

随着电脑以及手机的普及&#xff0c;全世界的人都已经习惯在互联网提问、购物、浏览资讯等&#xff0c;越来越多的用户开始担心自己的信息(银行卡号、电话、支付密码等)被窃取以及篡改。SSL数字证书将http明文传输协议改为https加密传输协议&#xff0c;可以对网站传输信息加密…

electron自定义菜单

创建menu.js const { app, Menu } require("electron"); const createMenu () > {const menu [{label: "菜单",submenu: [{label: "新增",click: () > {},}, ],},{label: "关于",submenu: [{label: "新增",click:…

不要坑老实人,搭建自己的知识付费小程序平台应该选哪一个?

明理信息科技知识付费saas租户平台 随着知识经济的兴起&#xff0c;知识付费已经成为一种趋势。越来越多的人开始将自己的知识和技能进行变现&#xff0c;而知识付费小程序平台则成为了一个重要的渠道。然而&#xff0c;市面上的知识付费小程序平台琳琅满目&#xff0c;其中不…

进阶学习——Linux系统磁盘管理与文件系统

目录 一、磁盘 1.认识磁盘 2.分区 2.1MBR&#xff08;Master Boot Record&#xff09;——主引导记录 2.2GPT分区 2.3磁盘分区结构 3.文件系统 3.1文件系统组成 3.1.1XFS ext4 3.1.2swap 3.1.3FAT16、FAT32 3.1.4NTFS&#xff08;xfs&#xff09; 3.1.5EXT4 3…

2024年运动款蓝牙耳机哪个品牌好?运动蓝牙耳机排行榜10强

​选择一款适合运动的耳机&#xff0c;可以让你的锻炼变得更加高效和愉快。运动耳机不仅需要具备出色的音质&#xff0c;还要有良好的防水防汗能力和舒适的佩戴体验。市面上有许多种运动耳机可供选择&#xff0c;但哪款才是最适合你的呢&#xff1f;下面我来给大家推荐几款值得…

高可用解决方案 Keepalived 概述

概述 Keepalived 介绍 Keepalived 是 Linux 下一个轻量级别的高可用解决方案&#xff0c;通过 **VRRP 协议&#xff08;虚拟路由冗余协议&#xff09;**来实现服务或者网络的高可用&#xff0c;可以利用其来解决单点故障。 起初是为 LVS 设计的&#xff0c;一个 LVS 服务会有 …

C++:继承(这一篇就够了)

C&#xff1a;继承&#xff08;这一篇就够了&#xff09; 一、继承的概念及定义1.1 继承的概念1.2 继承定义1.2.1定义格式1.2.2 继承关系和访问限定符1.2.3 继承基类成员访问方式的变化 二、基类和派生类对象赋值转换三、继承中的作用域四、派生类的默认成员函数五、继承与静态…

竞赛保研 基于情感分析的网络舆情热点分析系统

文章目录 0 前言1 课题背景2 数据处理3 文本情感分析3.1 情感分析-词库搭建3.2 文本情感分析实现3.3 建立情感倾向性分析模型 4 数据可视化工具4.1 django框架介绍4.2 ECharts 5 Django使用echarts进行可视化展示5.1 修改setting.py连接mysql数据库5.2 导入数据5.3 使用echarts…

C++正则表达式全攻略:从基础到高级应用

C正则表达式全攻略&#xff1a;从基础到高级应用 一、基础知识二、正则表达式的基本匹配三、C中使用正则表达式四、高级正则表达式五、实践示例六、性能优化6.1、编译正则表达式6.2、避免过度使用回溯6.3、优化匹配算法 七、总结 一、基础知识 正则表达式是一种用于匹配、搜索…

【如何选择Mysql服务器的CPU核数及内存大小】

文章目录 &#x1f50a;博主介绍&#x1f964;本文内容&#x1f4e2;文章总结&#x1f4e5;博主目标 &#x1f50a;博主介绍 &#x1f31f;我是廖志伟&#xff0c;一名Java开发工程师、Java领域优质创作者、CSDN博客专家、51CTO专家博主、阿里云专家博主、清华大学出版社签约作…

【数据结构-单链表】(C语言版本)

今天分享的是数据结构有关单链表的操作和实践&#xff08;图解法&#xff0c;图变化更利于理解&#xff09; 记录宗旨&#x1f4dd;&#xff1a; 眼&#xff08;脑&#xff09;过千遍&#xff0c;不如手过一遍。 我们都知道单链表是一种常见的链表数据结构&#xff0c;由一系列…