基于深度学习的瓶盖检测系统(Python+YOLOv5深度学习模型+清新界面)

在这里插入图片描述

摘要:基于深度学习的瓶盖检测系统用于传送带或日常场景中瓶盖检测识别,提供实时瓶盖检测定位和计数,辅助瓶盖生产加工过程的自动化识别。本文详细介绍基于深度学习的瓶盖检测系统,在介绍算法原理的同时,给出Python的实现代码、训练数据集,以及PyQt的UI界面。基于YOLOv5算法实现对图像中存在的多目标进行识别分类,在界面中可以选择各种图片、视频进行检测识别。博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。本博文目录如下:

文章目录

  • 前言
  • 1. 效果演示
  • 2. 瓶盖数据集及训练
  • 3. 瓶盖检测识别
  • 下载链接
  • 结束语

➷点击跳转至文末所有涉及的完整代码文件下载页☇

基于深度学习的瓶盖检测系统演示与介绍


前言

        对于饮料、医药、食品等生产厂家而言,瓶盖外观缺陷是产品生产制造环节常见的问题,由于对产品包装精细化、品质和连续批量生产的要求越来越高,传统人工检测容易造成漏检、误检,导致不良品流出且效率低,市场对瓶盖原厂质量检测提出了新的挑战。基于AI的全自动瓶盖视觉检测系统的出现,很好地解决了这一难点,成为越来越生产业企业新的选择。瓶盖检测系统既能确保包装质量,能对瓶盖材质进行检测,避免不符合食品安全标准的材料进入生产工序,保障了饮料食品的质量安全。

        本系统基于YOLOv5,采用登录注册进行用户管理,对于图片、视频和摄像头捕获的实时画面,可检测瓶盖的位置,系统支持结果记录、展示和保存,每次检测的结果记录在表格中。对此这里给出博主设计的界面,同款的简约风,功能也可以满足图片、视频和摄像头的识别检测,希望大家可以喜欢,初始界面如下图:

在这里插入图片描述

        检测类别时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个类别,也可开启摄像头或视频检测:

在这里插入图片描述

         详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


1. 效果演示

        软件的颜值和功能同样重要,首先我们还是通过动图看一下识别的效果,系统主要实现的功能是对图片、视频和摄像头画面中的瓶盖进行识别,识别的结果可视化显示在界面和图像中,另外提供多个目标的显示选择功能,演示效果如下。

(一)系统介绍

        基于深度学习的瓶盖检测系统主要用于日常场景中瓶盖的检测识别,也可用于传送带等加工回收场景,检测瓶盖目标在图像中的类别、位置、数目、置信度等;可对图片、视频文件读取的图像,或从摄像头获取的实时画面中的瓶盖进行识别,算法模型可选择替换;系统界面包含用户注册、登录功能,方便用户进行管理和使用;识别结果可视化,结果实时显示并能够进行目标逐个标注、显示和数据展示;画面显示窗口表格记录历史结果,图片结果可点击按钮保存,方便后续查阅使用。

在这里插入图片描述

(二)技术特点

         (1)检测算法采用YOLOv5实现,模型可切换更新;
         (2)选择图片、视频或摄像头方式识别瓶盖;
         (3)提供目标数、类别、位置等结果展示、切换和保存功能;
         (4)支持用户登录、注册、管理,界面缩放、可视化等功能;

(三)选择图片识别

        系统允许选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有识别的结果,可通过下拉选框查看单个结果,以便具体判断某一特定目标。本功能的界面展示如下图所示:

在这里插入图片描述

(四)视频识别效果展示

        很多时候我们需要识别一段视频中的多个瓶盖,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别多个瓶盖,并将瓶盖的分类和计数结果记录在右下角表格中,效果如下图所示:

在这里插入图片描述


2. 瓶盖数据集及训练

        本文实验的瓶盖数据集包含正面、侧面,不同光照背景,以及不同类型的瓶盖的图像。其中,训练集1601张图片,验证集105张图片,测试集67张图片,共计1773张图片,选取部分数据部分样本数据集如图所示。
在这里插入图片描述

        每张图像都包含一个标准文件,在.txt的文本文件的每一行都描述了一个边界框。检测框的坐标值经过图像尺寸归一化处理(即值介于 0 和 1 之间)

在这里插入图片描述

        data.yaml 是数据配置文件,记录数据集的详细信息。有以下参数:

        1、train、test和val:训练集、测试集和验证集的位置。

        2、nc:数据集中的类别数。

        3、names:数据集中类别的名称。

train: ./BottleCap/images/train
val: ./BottleCap/images/valid
test: ./BottleCap/images/test

nc: 1
names: ['bottle-cap']

        结果如下:

在这里插入图片描述

        使用 train.py 训练:打开此代码,查看def parse_opt()。

parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
    parser.add_argument('--data', type=str, default='/BottleCap/bottle-cap.yaml', help='garbage.yaml path')
    parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=300)
    parser.add_argument('--batch-size', type=int, default=2, help='total batch size for all GPUs')
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument('--notest', action='store_true', help='only test final epoch')
    parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
    parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    parser.add_argument('--name', default='', help='renames experiment folder exp{N} to exp{N}_{name} if supplied')
    parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
    parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
    parser.add_argument('--logdir', type=str, default='BottleCap/logs', help='logging directory')
    parser.add_argument('--workers', type=int, default=1, help='maximum number of dataloader workers')
    opt = parser.parse_args()

        weights 参数是预训练权重,如果这里设置为空的话,重新训练模型。

        参数是模型配置文件,要使用自定义网络,请创建一个新文件并在运行时使用cfg标志指定它。

        data 参数是数据集配置文件,里面主要存放数据集的类别和路径。

        hyp 参数是超参数配置文件,超参数里面包含了大量的参数信息。默认的data/hyp.scratch.yaml如下。

lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.2  # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937  # SGD momentum/Adam beta1
weight_decay: 0.0005  # optimizer weight decay 5e-4
warmup_epochs: 3.0  # warmup epochs (fractions ok)
warmup_momentum: 0.8  # warmup initial momentum
warmup_bias_lr: 0.1  # warmup initial bias lr
box: 0.05  # box loss gain
cls: 0.5  # cls loss gain
cls_pw: 1.0  # cls BCELoss positive_weight
obj: 1.0  # obj loss gain (scale with pixels)
obj_pw: 1.0  # obj BCELoss positive_weight
iou_t: 0.20  # IoU training threshold
anchor_t: 4.0  # anchor-multiple threshold
# anchors: 0  # anchors per output grid (0 to ignore)
fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4  # image HSV-Value augmentation (fraction)
degrees: 0.0  # image rotation (+/- deg)
translate: 0.1  # image translation (+/- fraction)
scale: 0.5  # image scale (+/- gain)
shear: 0.0  # image shear (+/- deg)
perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
flipud: 0.0  # image flip up-down (probability)
fliplr: 0.5  # image flip left-right (probability)
mosaic: 1.0  # image mosaic (probability)
mixup: 0.0  # image mixup (probability)

        epochs 参数是训练轮数,默认300 次。

        batch_size 参数是每批次输入的数据量,取值为 -1 ,将自动调节。

        imgsize、img、img-size,训练集和测试集图片的大小,默认 640*640。

        以上就是YOLOv5的整体介绍,接下来进行训练。本项目使用Yolov5训练了一个瓶盖检测模型,在笔记本的3070显卡下训练了300 epoch,在终端运行的截图如下:

在这里插入图片描述
        在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练舰船类识别的模型训练曲线图。

在这里插入图片描述
        一般我们会接触到两个指标,分别是召回率recall和精度precision,两个指标p和r都是简单地从一个角度来判断模型的好坏,均是介于0到1之间的数值,其中接近于1表示模型的性能越好,接近于0表示模型的性能越差,为了综合评价目标检测的性能,一般采用均值平均密度map来进一步评估模型的好坏。我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下所计算出的p值和r值,一般情况下,p值和r值是负相关的,绘制出来可以得到如下图所示的曲线,其中曲线的面积我们称AP,目标检测模型中每种目标可计算出一个AP值,对所有的AP值求平均则可以得到模型的mAP值。

在这里插入图片描述

        以PR-curve为例,你可以看到我们的模型在验证集上的均值平均准确率为0.959。

3. 瓶盖检测识别

        在训练完成后得到最佳模型,接下来我们将帧图像输入到这个网络进行预测,运行testPicture.py从而得到预测结果

if __name__ == '__main__':
    img_path = "./UI_rec/test_/20220410_024444_jpg.rf.c7a82c73f24f2212609a325acbe6e169.jpg"
    image = cv_imread(img_path)
    image = cv2.resize(image, (850, 500))
    img0 = image.copy()
    img = letterbox(img0, new_shape=imgsz)[0]
    img = np.stack(img, 0)
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    img = np.ascontiguousarray(img)
 
    pred, useTime = predict(img)
 
    det = pred[0]
    p, s, im0 = None, '', img0
    if det is not None and len(det):  # 如果有检测信息则进入
        det[:, :4] = scale_coords(img.shape[1:], det[:, :4], im0.shape).round()  # 把图像缩放至im0的尺寸
        number_i = 0  # 类别预编号
        detInfo = []
        for *xyxy, conf, cls in reversed(det):  # 遍历检测信息
            c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
            # 将检测信息添加到字典中
            detInfo.append([names[int(cls)], [c1[0], c1[1], c2[0], c2[1]], '%.2f' % conf])
            number_i += 1  # 编号数+1
 
            label = '%s %.2f' % (names[int(cls)], conf)
 
            # 画出检测到的目标物
            plot_one_box(image, xyxy, label=label, color=colors[int(cls)])
    # 实时显示检测画面
    cv2.imshow('Stream', image)
    # if cv2.waitKey(1) & 0xFF == ord('q'):
    #     break
    c = cv2.waitKey(0) & 0xff

在这里插入图片描述

        博主对整个系统进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。

在这里插入图片描述


下载链接

    若您想获得博文中涉及的实现完整全部程序文件(包括测试图片、视频,py, UI文件等,如下图),这里已打包上传至博主的面包多平台,见可参考博客与视频,已将所有涉及的文件同时打包到里面,点击即可运行,完整文件截图如下:

在这里插入图片描述

    在文件夹下的资源显示如下,下面的链接中也给出了Python的离线依赖包,读者可在正确安装Anaconda和Pycharm软件后,复制离线依赖包至项目目录下进行安装,离线依赖的使用详细演示也可见本人B站视频:win11从头安装软件和配置环境运行深度学习项目、Win10中使用pycharm和anaconda进行python环境配置教程。

在这里插入图片描述

注意:该代码采用Pycharm+Python3.8开发,经过测试能成功运行,运行界面的主程序为runMain.py和LoginUI.py,测试图片脚本可运行testPicture.py,测试视频脚本可运行testVideo.py。为确保程序顺利运行,请按照requirements.txt配置Python依赖包的版本。Python版本:3.8,请勿使用其他版本,详见requirements.txt文件;

完整资源中包含数据集及训练代码,环境配置与界面中文字、图片、logo等的修改方法请见视频,项目完整文件下载请见参考博客文章里面,或参考视频的简介处给出:➷➷➷

参考博客文章:https://www.cnblogs.com/sixuwuxian/p/17237977.html

参考视频演示:https://www.bilibili.com/video/BV1LX4y1f7pg/

离线依赖库下载链接:https://pan.baidu.com/s/1hW9z9ofV1FRSezTSj59JSg?pwd=oy4n (提取码:oy4n )


界面中文字、图标和背景图修改方法:

        在Qt Designer中可以彻底修改界面的各个控件及设置,然后将ui文件转换为py文件即可调用和显示界面。如果只需要修改界面中的文字、图标和背景图的,可以直接在ConfigUI.config文件中修改,步骤如下:
        (1)打开UI_rec/tools/ConfigUI.config文件,若乱码请选择GBK编码打开。
        (2)如需修改界面文字,只要选中要改的字符替换成自己的就好。
        (3)如需修改背景、图标等,只需修改图片的路径。例如,原文件中的背景图设置如下:

mainWindow = :/images/icons/back-image.png

        可修改为自己的名为background2.png图片(位置在UI_rec/icons/文件夹中),可将该项设置如下即可修改背景图:

mainWindow = ./icons/background2.png

结束语

        由于博主能力有限,博文中提及的方法即使经过试验,也难免会有疏漏之处。希望您能热心指出其中的错误,以便下次修改时能以一个更完美更严谨的样子,呈现在大家面前。同时如果有更好的实现方法也请您不吝赐教。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/2817.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

E - 积木画(状态压缩DP)

E - 积木画(状态压缩DP) 1、问题 E - 积木画 2、分析 这道题很明显是一道DP题,而且是一个简化版的状态压缩DP。 (1)状态表示 f[i][j]f[i][j]f[i][j]表示前面i−1i-1i−1已经摆好,并且第iii列的状态是j…

第七讲 贪心

文章目录股票买卖 II货仓选址(贪心:排序中位数)糖果传递(❗贪心:中位数)雷达设备(贪心排序)付账问题(平均值排序❓)乘积最大(排序/双指针)后缀表达…

SpringBoot——基于SpringBoot整合Mybatis的入门案例+sql提示配置

开发流程图 先选择springboot项目创建,此处3.0以上的springboot项目最低都要java17版本 让数据库表中的属性名和实体类中的属性名保持一致就可以完成查询结果的自动封装。 2.引入myabtis相关依赖,配置mybatis 这里可以手动选择mybatis框架的依赖和mysq…

常见的卷积神经网络结构——分类、检测和分割

本文持续更新~~ 本文整理了近些年来常见的卷积神经网络结构,涵盖了计算机视觉领域的几大基本任务:分类任务、检测任务和分割任务。对于较复杂的网络,本文只会记录其中的核心模块以及重要的网络设计思想,并不会记录完整的网络结构。…

POM依赖报错解决方案汇总

POM依赖报错解决方案汇总 POM依赖报错解决方案汇总 状况 1 创建完一个maven项目,在pom文件在引入依赖,等下方自动导入加载完毕,去查看IDEA工具的Maven Projects工具选项中Dependencies 依然后依赖红色报错 2 在pom文件中,引用依赖后,该依赖的版本号处直接出现红色 3 IDEA工具…

蓝桥杯Web前端练习题-----水果拼盘

一、水果拼盘 介绍 目前 CSS3 中新增的 Flex 弹性布局已经成为前端页面布局的首选方案,本题可以使用 Flex 属性快速完成布局。 准备 开始答题前,需要先打开本题的项目代码文件夹,目录结构如下: ├── css │ └── style.…

值得记忆的STL常用算法,分分钟摆脱容器调用的困境,以vector为例,其余容器写法类似

STL常用算法 概述&#xff1a; 算法主要是由头文件<algorithm> <functional> <numeric>组成 <algorithm>是所有STL头文件中最大的一个&#xff0c;范围涉及到比较、交换、查找、遍历操作、复制、修改等等 <nuneric>体积很小&#xff0c;只包括…

【AWS入门】通过AWS存储网关(Storage Gate Way)实现文件共享

目录1. 创建网关2. 创建文件共享3. Windows文件共享4. LINUX文件共享1. 创建网关 配置缓存存储需要加载一会儿&#xff0c;此处需要等候 根据上述配置&#xff0c;会自动生成一个EC2实例 2. 创建文件共享 网关&#xff1a;选择上述步骤中创建的网关&#xff0c;选择即可 文…

电路设计的一些概念

锁存器的产生 论述1 (转)时序电路&#xff0c;生成触发器&#xff0c;触发器是有使能端的&#xff0c;使能端无效时数据不变&#xff0c;这是触发器的特性。 组合逻辑&#xff0c;由于数据要保持不变&#xff0c;只能通过锁存器来保存。 第一个代码&#xff0c;由于是时序逻…

基于XML的自动装配~

基于XML的自动装配之场景模拟&#xff1a; 自动装配&#xff1a;根据指定的策略&#xff0c;在IOC容器中匹配某一个bean&#xff0c;自动为指定的bean中所依赖的类类型或者接口类型赋值 之前我们学过的依赖注入&#xff0c;我们在为不同属性赋值时&#xff0c;例如类类型的属性…

可别再用BeanUtils了(性能拉胯),试试这款转换神器

老铁们是不是经常为写一些实体转换的原始代码感到头疼&#xff0c;尤其是实体字段特别多的时候。有的人会说&#xff0c;我直接使用get/set方法。没错&#xff0c;get/set方法的确可以解决&#xff0c;而且也是性能较高的处理方法&#xff0c;但是大家有没有想过&#xff0c;要…

数据结构与算法——堆的基本存储

目录 一、概念及其介绍 二、适用说明 三、结构图示 四、Java 实例代码 五.堆和栈的区别 一、概念及其介绍 堆(Heap)是计算机科学中一类特殊的数据结构的统称。 堆通常是一个可以被看做一棵完全二叉树的数组对象。 堆满足下列性质&#xff1a; 堆中某个节点的值总是不大…

MySQL主从复制

主从复制概述 如何提升数据库并发能力 在实际工作中&#xff0c;我们常常将 Redis 作为缓存与 MySQL 配合来使用&#xff0c;当有请求的时候&#xff0c;首先会从缓存中进行查找&#xff0c;如果存在就直接取出。如果不存在再访问数据库&#xff0c;这样就 提升了读取的效率&…

I2C和SPI总线以及通信

通讯属性 概括 Serial/parallel 串行/并行Synchronous/asynchronous 同步/异步Point-to-point / bus 点对点 总线Half-duplex/full-duplex 半双工/全双工Master-slave/ equal partners 主从/对等single-ending / differential 单端/差分 点对点和总线 点对点通讯 只有两个通…

【简陋Web应用2】人脸检测——基于Flask和PaddleHub

文章目录&#x1f6a9; 前言&#x1f33a; 效果演示&#x1f966; 分析与设计&#x1f349; 实现&#x1f36c; 1. 部署人脸检测模型&#x1f36d; 2. 使用Flask构建app2.1 目录结构2.2 forms.py2.3 utils.py2.4 app.py2.5 index.html&#x1f95d; Bug(s)&#x1f6a9; 前言 本…

V2G模式下含分布式能源网优化运行研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f4cb;&#x1f4cb;&#x1f4cb;本文目录如下&#xff1a;&#x1f381;&#x1f381;&#x1f381; 目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &am…

手写一个简单的RPC框架

学习RPC框架&#xff0c;由繁化简&#xff0c;了解其本质原理 文章目录项目简介什么是RPC&#xff1f;项目模块项目代码common模块client模块server模块framework模块测试项目简介 什么是RPC&#xff1f; RPC&#xff08;Remote Procedure Call&#xff09;即远程过程调用&am…

Cursor:GPT-4 驱动的强大代码编辑器

Cursor &#xff08;https://www.cursor.so/&#xff09;是 GPT-4 驱动的一款强大代码编辑器&#xff0c;可以辅助程序员进行日常的编码。下面通过一个实际的例子来展示 Cursor 如何帮助你编程。这个例子做的事情是网页抓取。抓取的目标是百度首页上的百度热搜&#xff0c;如下…

SWA Object Detection随机权重平均【论文+代码】

随机权重平均摘要IntroductionSWA实验部分消融实验摘要 您想在不增加推断成本和不改变检测器的情况下提高对象检测器的1.0 AP吗&#xff1f;让我们告诉您一个这样的秘方。这个秘方令人惊讶地简单&#xff1a;使用循环学习率训练您的检测器额外的12个epoches&#xff0c;然后将…

最强的Python可视化神器,你有用过么?

数据分析离不开数据可视化&#xff0c;我们最常用的就是Pandas&#xff0c;Matplotlib&#xff0c;Pyecharts当然还有Tableau&#xff0c;看到一篇文章介绍Plotly制图后我也跃跃欲试&#xff0c;查看了相关资料开始尝试用它制图。 1、Plotly Plotly是一款用来做数据分析和可视…