数据库开发之事务和索引的详细解析

2. 事务

场景:学工部整个部门解散了,该部门及部门下的员工都需要删除了。

  • 操作:

    -- 删除学工部
    delete from dept where id = 1;  -- 删除成功
    ​
    -- 删除学工部的员工
    delete from emp where dept_id = 1; -- 删除失败(操作过程中出现错误:造成删除没有成功)

  • 问题:如果删除部门成功了,而删除该部门的员工时失败了,此时就造成了数据的不一致。

要解决上述的问题,就需要通过数据库中的事务来解决。

2.1 介绍

在实际的业务开发中,有些业务操作要多次访问数据库。一个业务要发送多条SQL语句给数据库执行。需要将多次访问数据库的操作视为一个整体来执行,要么所有的SQL语句全部执行成功。如果其中有一条SQL语句失败,就进行事务的回滚,所有的SQL语句全部执行失败。

简而言之:事务是一组操作的集合,它是一个不可分割的工作单位。事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。

事务作用:保证在一个事务中多次操作数据库表中数据时,要么全都成功,要么全都失败。

2.2 操作

MYSQL中有两种方式进行事务的操作:

  1. 自动提交事务:即执行一条sql语句提交一次事务。(默认MySQL的事务是自动提交)

  2. 手动提交事务:先开启,再提交

事务操作有关的SQL语句:

SQL语句描述
start transaction; / begin ;开启手动控制事务
commit;提交事务
rollback;回滚事务

手动提交事务使用步骤:

  • 第1种情况:开启事务 => 执行SQL语句 => 成功 => 提交事务

  • 第2种情况:开启事务 => 执行SQL语句 => 失败 => 回滚事务

使用事务控制删除部门和删除该部门下的员工的操作:

-- 开启事务
start transaction ;
​
-- 删除学工部
delete from tb_dept where id = 1;
​
-- 删除学工部的员工
delete from tb_emp where dept_id = 1;
  • 上述的这组SQL语句,如果如果执行成功,则提交事务

-- 提交事务 (成功时执行)
commit ;
上述的这组SQL语句,如果如果执行失败,则回滚事务

-- 回滚事务 (出错时执行)
rollback ;

2.3 四大特性

面试题:事务有哪些特性?

  • 原子性(Atomicity):事务是不可分割的最小单元,要么全部成功,要么全部失败。

  • 一致性(Consistency):事务完成时,必须使所有的数据都保持一致状态。

  • 隔离性(Isolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环境下运行。

  • 持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。

事务的四大特性简称为:ACID

  • 原子性(Atomicity) :原子性是指事务包装的一组sql是一个不可分割的工作单元,事务中的操作要么全部成功,要么全部失败。

  • 一致性(Consistency):一个事务完成之后数据都必须处于一致性状态。

如果事务成功的完成,那么数据库的所有变化将生效。

如果事务执行出现错误,那么数据库的所有变化将会被回滚(撤销),返回到原始状态。

  • 隔离性(Isolation):多个用户并发的访问数据库时,一个用户的事务不能被其他用户的事务干扰,多个并发的事务之间要相互隔离。

一个事务的成功或者失败对于其他的事务是没有影响。

  • 持久性(Durability):一个事务一旦被提交或回滚,它对数据库的改变将是永久性的,哪怕数据库发生异常,重启之后数据亦然存在。

3. 索引

3.1 介绍

索引(index):是帮助数据库高效获取数据的数据结构 。

  • 简单来讲,就是使用索引可以提高查询的效率。

测试没有使用索引的查询:

添加索引后查询:

-- 添加索引
create index idx_sku_sn on tb_sku (sn);  #在添加索引时,也需要消耗时间
​
-- 查询数据(使用了索引)
select * from tb_sku where sn = '100000003145008';

优点:

  1. 提高数据查询的效率,降低数据库的IO成本。

  2. 通过索引列对数据进行排序,降低数据排序的成本,降低CPU消耗。

缺点:

  1. 索引会占用存储空间。

  2. 索引大大提高了查询效率,同时却也降低了insert、update、delete的效率。

3.2 结构

MySQL数据库支持的索引结构有很多,如:Hash索引、B+Tree索引、Full-Text索引等。

我们平常所说的索引,如果没有特别指明,都是指默认的 B+Tree 结构组织的索引。

在没有了解B+Tree结构前,我们先回顾下之前所学习的树结构:

二叉查找树:左边的子节点比父节点小,右边的子节点比父节点大

当我们向二叉查找树保存数据时,是按照从大到小(或从小到大)的顺序保存的,此时就会形成一个单向链表,搜索性能会打折扣。

可以选择平衡二叉树或者是红黑树来解决上述问题。(红黑树也是一棵平衡的二叉树)

但是在Mysql数据库中并没有使用二叉搜索数或二叉平衡数或红黑树来作为索引的结构。

思考:采用二叉搜索树或者是红黑树来作为索引的结构有什么问题?

答案

说明:如果数据结构是红黑树,那么查询1000万条数据,根据计算树的高度大概是23左右,这样确实比之前的方式快了很多,但是如果高并发访问,那么一个用户有可能需要23次磁盘IO,那么100万用户,那么会造成效率极其低下。所以为了减少红黑树的高度,那么就得增加树的宽度,就是不再像红黑树一样每个节点只能保存一个数据,可以引入另外一种数据结构,一个节点可以保存多个数据,这样宽度就会增加从而降低树的高度。这种数据结构例如BTree就满足。

下面我们来看看B+Tree(多路平衡搜索树)结构中如何避免这个问题:

B+Tree结构:

  • 每一个节点,可以存储多个key(有n个key,就有n个指针)

  • 节点分为:叶子节点、非叶子节点

    • 叶子节点,就是最后一层子节点,所有的数据都存储在叶子节点上

    • 非叶子节点,不是树结构最下面的节点,用于索引数据,存储的的是:key+指针

  • 为了提高范围查询效率,叶子节点形成了一个双向链表,便于数据的排序及区间范围查询

拓展:

非叶子节点都是由key+指针域组成的,一个key占8字节,一个指针占6字节,而一个节点总共容量是16KB,那么可以计算出一个节点可以存储的元素个数:16*1024字节 / (8+6)=1170个元素。

  • 查看mysql索引节点大小:show global status like 'innodb_page_size'; -- 节点大小:16384

当根节点中可以存储1170个元素,那么根据每个元素的地址值又会找到下面的子节点,每个子节点也会存储1170个元素,那么第二层即第二次IO的时候就会找到数据大概是:1170*1170=135W。也就是说B+Tree数据结构中只需要经历两次磁盘IO就可以找到135W条数据。

对于第二层每个元素有指针,那么会找到第三层,第三层由key+数据组成,假设key+数据总大小是1KB,而每个节点一共能存储16KB,所以一个第三层一个节点大概可以存储16个元素(即16条记录)。那么结合第二层每个元素通过指针域找到第三层的节点,第二层一共是135W个元素,那么第三层总元素大小就是:135W*16结果就是2000W+的元素个数。

结合上述分析B+Tree有如下优点:

  • 千万条数据,B+Tree可以控制在小于等于3的高度

  • 所有的数据都存储在叶子节点上,并且底层已经实现了按照索引进行排序,还可以支持范围查询,叶子节点是一个双向链表,支持从小到大或者从大到小查找

3.3 语法

创建索引

create  [ unique ]  index 索引名 on  表名 (字段名,... ) ;

案例:为tb_emp表的name字段建立一个索引

create index idx_emp_name on tb_emp(name);

 

在创建表时,如果添加了主键和唯一约束,就会默认创建:主键索引、唯一约束

查看索引

show  index  from  表名;

案例:查询 tb_emp 表的索引信息

show  index  from  tb_emp;

删除索引

drop  index  索引名  on  表名;

案例:删除 tb_emp 表中name字段的索引

drop index idx_emp_name on tb_emp;

注意事项:

  • 主键字段,在建表时,会自动创建主键索引

  • 添加唯一约束时,数据库实际上会添加唯一索引

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/278129.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

paypal实操常见问题——绑卡篇

1、绑美金提款卡的时候卡号类型怎么选? PayPal在绑定美金提现卡的时候,页面里会出来两个选项,一个是“关联借记卡或信用卡”,一个是“关联银行账户” “关联借记卡或信用卡”这个选项是消费的时候用来付款的卡; “关…

Nginx服务器中设置禁止访问文件或目录的方法

autoindex off; 规则描述: 如果访问NGINX下的一个web应用,如果输入是一个目录名,而且该目录下没有一个默认访问文件,那么Nginx会将该目录下的所有文件列出来,这种敏感信息泄露是 严格禁止的。Nginx默认的是关闭目录列…

C# Image Caption

目录 介绍 效果 模型 decoder_fc_nsc.onnx encoder.onnx 项目 代码 下载 C# Image Caption 介绍 地址:https://github.com/ruotianluo/ImageCaptioning.pytorch I decide to sync up this repo and self-critical.pytorch. (The old master is in old ma…

第52周,第三期技术动态

大家好,才是真的好。 今天周五,我们主要介绍与Domino相关产品新闻,以及互联网或其他IT行业动态等。 一、HCL Domino将重新开发和发布应用市场 为了持续吸引新客户,现有客户以及技术爱好者和专业人士,在2023年的 Col…

JavaScript(简写js)常用事件举例演示

目录 1.窗口事件onblur :失去焦点onfocus:获得焦点onload:窗口加载事件onresize:窗口大小缩放事件 二、表单事件oninput :当文本框内容改变时 ,立即将改变内容 输出在控制台onchange: 内容改变事件onclick:鼠标单击时触发此事件 三…

基于Python的短视频APP大学生用户数据分析预测

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目背景 本项目以国内高校大学生在一段时间内对某短视频平台的使用数据为基础。通过数据分析和建模方法,我们深入挖掘这些数据中所蕴含的信息,以实现对高校和大学生维度的统计分析。…

演员-评论家算法:多智能体强化学习核心框架

演员-评论家算法 演员-评论家算法:策略梯度算法 DQN 算法演员-评论家的协作流程演员:策略梯度算法计算智能体策略预期奖励的梯度公式分解时间流程拆解 通过采样方法近似估计梯度公式拆解时间流程拆解 改进策略设置基线:适用于减小方差、加速…

Flowable中6种部署方式

1. addClasspathResource src/main/resources/processes/LeaveProcess.bpmn20.xml Deployment deploy repositoryService.createDeployment().name("请假审批").addClasspathResource("processes/LeaveProcess.bpmn20.xml").deploy();2. addInputStream…

简述计算机⽹络七层模型和各⾃的作⽤?

这张图大家看下就好了,慢慢学习了解上面的东西就好,在面试中需要回答以下内容: 物理层:主要负责通过物理媒介传输⽐特流,如电缆、光纤、⽆线电波等。物理层规定了物理连接的规范,包括电缆的类型、接⼝的规范…

苹果Mac电脑甘特图管 EasyGantt最新 for mac

EasyGantt提供直观的界面,让用户能够轻松创建具有时间轴视图的甘特图。你可以添加并排列任务、设置任务的开始和结束日期、调整任务之间的依赖关系等。 任务管理:软件允许你添加、编辑和删除任务,设定任务的优先级和状态,并为每个…

Decorator装饰模式(单一责任)

Decorator(装饰模式:单一责任模式) 链接:装饰模式实例代码 解析 目的 在某些情况下我们可能会“过度地使用继承来扩展对象的功能”,由于继承为类型引入的静态特质,使得这种扩展方式缺乏灵活性&#xff…

web前端 JQuery下拉菜单的案例

浏览器运行结果&#xff1a; JQuery下载&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/17LXZigLQ8yau0toTGj4P_Q?pwd4332 提取码&#xff1a;4332 代码&#xff1a; <!doctype html> <html> <head> <meta charset"UTF-8"><…

超详细YOLOv8图像分类全程概述:环境、训练、验证与预测详解

目录 yolov8导航 YOLOv8&#xff08;附带各种任务详细说明链接&#xff09; 搭建环境说明 数据集准备 项目目录结构展示 不同版本性能对比 模型参数和性能解释 模型对比 训练 执行训练示意代码 训练参数说明 训练正常执行示意 训练结果文件解释 weights args.yaml…

GoogleNet

时间&#xff1a;2014 网络中的亮点&#xff1a; 引入了Inception结构&#xff08;融合不同尺度的特征信息&#xff09;使用11的卷积核进行降维以及映射处理添加两个辅助分类器帮助训练丢弃全连接层&#xff0c;使用平均池化层&#xff08;大大减少模型参数&#xff09; Alex…

高光回眸:阿里云容器服务如何全面助力精彩亚运

作者&#xff1a;刘佳旭 谢乘胜 贤维 引言 2023 年&#xff0c;第 19 届杭州亚运会在杭州成功举办。在亚运之光和科技之光的交相辉映下&#xff0c;这届亚运会成为亚运史上首届“云上亚运”&#xff0c;用云计算创造了历史&#xff0c;赛事核心系统和转播全面上云&#xff0c…

如何使用Spoofy检测目标域名是否存在欺骗攻击风险

关于Spoofy Spoofy是一款功能强大的域名安全检测工具&#xff0c;在该工具的帮助下&#xff0c;广大研究人员可以轻松检测单个目标域名或域名列表中的域名是否存在遭受欺诈攻击的风险。 该工具基于纯Python开发&#xff0c;可以根据SPF和DMARC记录来检测和判断目标域名是否可…

智能分析网关V4+太阳能供电模式,搭建鱼塘养殖远程视频监控方案

一、行业背景 传统的鱼塘养殖模式由于养殖区域面积大、管理难度高&#xff0c;经常会出现偷钓者、盗窃鱼苗、非法入侵等监管难题&#xff0c;给养殖户带来了不小的经济损失。为了解决这些问题&#xff0c;搭建鱼塘远程监控系统成为了必要之举。通过远程监控系统&#xff0c;管…

帆软报表中定时调度中的最后一步如何增加新的处理方式

在定时调度中,到调度执行完之后,我们可能想做一些别的事情,当自带的处理方式不满足时,可以自定义自己的处理方式。 产品的处理方式一共有如下这些类型: 我们想在除了上面的处理方式之外增加自己的处理方式应该怎么做呢? 先看下效果: 涉及到两方面的改造,前端与后端。…

java设计模式学习之【模板方法模式】

文章目录 引言模板方法模式简介定义与用途实现方式 使用场景优势与劣势在Spring框架中的应用游戏设计示例代码地址 引言 设想你正在准备一顿晚餐&#xff0c;无论你想做意大利面、披萨还是沙拉&#xff0c;制作过程中都有一些共同的步骤&#xff1a;准备原料、加工食物、摆盘。…

医院绩效考核系统源码,java源码,商业级医院绩效核算系统源码

医院绩效定义&#xff1a; “医院工作量绩效方案”是一套以工作量&#xff08;RBRVS&#xff0c;相对价值比率&#xff09;为核算基础&#xff0c;以工作岗位、技术含量、风险程度、服务数量等业绩为主要依据&#xff0c;以工作效率和效益、工作质量、患者满意度等指标为综合考…