动态规划 多源路径 字典树 LeetCode2977:转换字符串的最小成本

涉及知识点

动态规划 多源最短路径 字典树

题目

给你两个下标从 0 开始的字符串 source 和 target ,它们的长度均为 n 并且由 小写 英文字母组成。
另给你两个下标从 0 开始的字符串数组 original 和 changed ,以及一个整数数组 cost ,其中 cost[i] 代表将字符串 original[i] 更改为字符串 changed[i] 的成本。
你从字符串 source 开始。在一次操作中,如果 存在 任意 下标 j 满足 cost[j] == z 、original[j] == x 以及 changed[j] == y ,你就可以选择字符串中的 子串 x 并以 z 的成本将其更改为 y 。 你可以执行 任意数量 的操作,但是任两次操作必须满足 以下两个 条件 之一 :
在两次操作中选择的子串分别是 source[a…b] 和 source[c…d] ,满足 b < c 或 d < a 。换句话说,两次操作中选择的下标 不相交 。
在两次操作中选择的子串分别是 source[a…b] 和 source[c…d] ,满足 a == c 且 b == d 。换句话说,两次操作中选择的下标 相同 。
返回将字符串 source 转换为字符串 target 所需的 最小 成本。如果不可能完成转换,则返回 -1 。
注意,可能存在下标 i 、j 使得 original[j] == original[i] 且 changed[j] == changed[i] 。
示例 1:
输入:source = “abcd”, target = “acbe”, original = [“a”,“b”,“c”,“c”,“e”,“d”], changed = [“b”,“c”,“b”,“e”,“b”,“e”], cost = [2,5,5,1,2,20]
输出:28
解释:将 “abcd” 转换为 “acbe”,执行以下操作:

  • 将子串 source[1…1] 从 “b” 改为 “c” ,成本为 5 。
  • 将子串 source[2…2] 从 “c” 改为 “e” ,成本为 1 。
  • 将子串 source[2…2] 从 “e” 改为 “b” ,成本为 2 。
  • 将子串 source[3…3] 从 “d” 改为 “e” ,成本为 20 。
    产生的总成本是 5 + 1 + 2 + 20 = 28 。
    可以证明这是可能的最小成本。
    示例 2:
    输入:source = “abcdefgh”, target = “acdeeghh”, original = [“bcd”,“fgh”,“thh”], changed = [“cde”,“thh”,“ghh”], cost = [1,3,5]
    输出:9
    解释:将 “abcdefgh” 转换为 “acdeeghh”,执行以下操作:
  • 将子串 source[1…3] 从 “bcd” 改为 “cde” ,成本为 1 。
  • 将子串 source[5…7] 从 “fgh” 改为 “thh” ,成本为 3 。可以执行此操作,因为下标 [5,7] 与第一次操作选中的下标不相交。
  • 将子串 source[5…7] 从 “thh” 改为 “ghh” ,成本为 5 。可以执行此操作,因为下标 [5,7] 与第一次操作选中的下标不相交,且与第二次操作选中的下标相同。
    产生的总成本是 1 + 3 + 5 = 9 。
    可以证明这是可能的最小成本。
    示例 3:
    输入:source = “abcdefgh”, target = “addddddd”, original = [“bcd”,“defgh”], changed = [“ddd”,“ddddd”], cost = [100,1578]
    输出:-1
    解释:无法将 “abcdefgh” 转换为 “addddddd” 。
    如果选择子串 source[1…3] 执行第一次操作,以将 “abcdefgh” 改为 “adddefgh” ,你无法选择子串 source[3…7] 执行第二次操作,因为两次操作有一个共用下标 3 。
    如果选择子串 source[3…7] 执行第一次操作,以将 “abcdefgh” 改为 “abcddddd” ,你无法选择子串 source[1…3] 执行第二次操作,因为两次操作有一个共用下标 3 。
    参数范围
    1 <= source.length == target.length <= 1000
    source、target 均由小写英文字母组成
    1 <= cost.length == original.length == changed.length <= 100
    1 <= original[i].length == changed[i].length <= source.length
    original[i]、changed[i] 均由小写英文字母组成
    original[i] != changed[i]
    1 <= cost[i] <= 106

分析

将s按顺序拆分成若干子串,任何字符都在一个子串中,且只在一个字串中。求这些子串全部转成t的最小成本。

动态规划

动态规划之状态表示dp[i]表示将s[0,i)转化成t[0,i)的最小成本
动态规划之状态转移方程dp[j]=min(dp[i]+s[i,j)转化成t[i,j)成本), i取值范围[0,j)
动态规划之状态之初始化dp[0]=0
动态规划之状态之填表顺序两层循环枚举i,j ,先枚举i,再枚举j。s[i,j)是最后一个子串
动态规划之状态之返回值dp.back()

字符经过多次转化的最小成本

本质就是最短多源路径。

将字符串转成整数(节点编号)

如果用哈希map,每次是O(n),就超时了。可以自写哈希或用字典树,从查询s[i,j)到s[i+j+1)时间复杂度是O(1)。总时间复杂度是O(n2)。

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}
}


int main()
{

	string source, target;
	vector<string> original, changed;
	vector<int> cost;

	{
		Solution sln;
		source = "abcdefgh", target = "acdeeghh", original = { "bcd", "fgh", "thh" }, changed = { "cde", "thh", "ghh" }, cost = { 1, 3, 5 };
		auto res = sln.minimumCost(source, target, original, changed, cost);
		Assert(9LL, res);
	}
	{
		Solution sln;
		source = "abcd", target = "acbe";
		original = { "a", "b", "c", "c", "e", "d" }, changed = { "b", "c", "b", "e", "b", "e" };
		cost = { 2, 5, 5, 1, 2, 20 };
		auto res = sln.minimumCost(source, target, original, changed, cost);
		Assert(28LL, res);
	}
	{
		Solution sln;
		source = "abbaacddcbacbddcbdbddcadbadbbdbaabcdbdbdcaccacaddcabadadaccabbddbbdacaacdbdcaaddcacbcbcaaacaddabcabc";
		target = "abbaacdbcbabcadcbdbddcadbadbbddaabcdbdddcacadbacabcbdbbbbdaabbddbbdaabbcdbdcaaddcacbcbcadadccdcbcbcb";
		original = { "b", "c", "a", "cbd", "adc", "ddb", "dcb", "dbd", "b", "caac", "acdc", "cbbd", "bcdb", "ddbc", "aacadda", "cbadbbd", "aaabcad", "bacdccc", "ddabdaa", "abc", "bbc", "cdd", "ddb", "cacaddcabad", "bdcdccabdcb", "bddbbabdcac", "adacc", "bbdca", "dabad", "cddcba" };
		changed = { "c", "a", "d", "adc", "ddb", "dcb", "dbd", "bca", "d", "acdc", "cbbd", "bcdb", "ddbc", "abbc", "cbadbbd", "aaabcad", "bacdccc", "ddabdaa", "dadccdc", "bbc", "cdd", "ddb", "bcb", "bdcdccabdcb", "bddbbabdcac", "adbacabcbdb", "bbdca", "dabad", "bbbda", "cdbcba" };
		cost = { 63, 87, 77, 94, 100, 73, 99, 16, 89, 94, 76, 43, 76, 84, 83, 38, 96, 87, 34, 98, 33, 53, 58, 90, 61, 51, 92, 76, 91, 70 };
		auto res = sln.minimumCost(source, target, original, changed, cost);
		Assert(2044LL, res);
	}
		
	{
		Solution sln;
		source = "aaaddcaaccbabaaccbabbaadcccadbaacbddbaccabddbdbaaddbbacbddddbbdbccaadcaccacdbcbddbacabadaaccbadbbdbc";
		target = "abaddcabcdbabcbadcaccaadabbadddbcacaaabdabbdcbbdbcbaaabbbcddcbddcbccadacddcbdcbacadbbadbdabcbadbbdac";
		original = { "ddddb", "dccbb", "dadac", "dbdbb", "ddbacabadaac", "bcbccdcadabd", "dacabcdaacca", "dcdadacacbbd", "dcccadbaacbddbacc", "dcdcbccdccdbaaaac", "bbbcccdbcdcadaabc", "bccaadcaccacdb", "bbcabcbcbaddbd", "dbadadaddcddad", "badaddbcddacca", "bc", "da", "cb", "ddbdbaaddbbac", "dbcadcdbabddd", "abdadacbbbcca", "adaaabcabdbcc", "caaccbabaaccbabba", "abaadddbaaccbbacc", "bbddaaadcbccccbac", "cdbdbddaadbbbdbdd", "bcbdaabaddbdcdcaa", "aa", "cb", "dd" };
		changed = { "dccbb", "dadac", "dbdbb", "bcddc", "bcbccdcadabd", "dacabcdaacca", "dcdadacacbbd", "acadbbadbdab", "dcdcbccdccdbaaaac", "bbbcccdbcdcadaabc", "dabbadddbcacaaabd", "bbcabcbcbaddbd", "dbadadaddcddad", "badaddbcddacca", "dcbccadacddcbd", "da", "cb", "ac", "dbcadcdbabddd", "abdadacbbbcca", "adaaabcabdbcc", "bdcbbdbcbaaab", "abaadddbaaccbbacc", "bbddaaadcbccccbac", "cdbdbddaadbbbdbdd", "bcbdaabaddbdcdcaa", "cabcdbabcbadcacca", "cb", "dd", "ba" };
		cost = { 67, 56, 64, 83, 100, 73, 95, 97, 100, 98, 20, 92, 58, 70, 95, 77, 95, 93, 69, 92, 77, 53, 96, 68, 83, 96, 93, 64, 81, 100 };
		auto res = sln.minimumCost(source, target, original, changed, cost);
		Assert(2405LL, res);
	}

	

	

//CConsole::Out(res);
}

代码

我写了N版都超时,单个用例不超时,总用例超时。用题解的代码运行了错误和超时用例,速度比我的速度快了近一半。算了,不继续优化了,许多比赛的技巧是工作的灾难,比如用原生数组代替vector。

第六版超时

template<class TData, TData defData,int iTypeNum = 26, TData cBegin = 'a'>
class CTrie
{
public:
	CTrie() 
	{
		m_iID = s_ID++;
	}
	int GetLeadCount()
	{
		return m_iLeafCount;
	}
	template<class IT>
	int Add(IT begin, IT end)
	{
		int iLeve = 0;
		CTrie* pNode = this;
		for (; begin != end; ++begin)
		{
			pNode = pNode->AddChar(*begin);			
			pNode->m_iLeve = iLeve++;
		}
		if (-1 == pNode->m_iLeafID)
		{
			pNode->m_iLeafID = m_iLeafCount++;
		}
		return pNode->m_iLeafID;
	}
	template<class IT>
	CTrie* Search(IT begin, IT end)
	{
		if (begin == end)
		{
			return this;
		}

		if ('.' == *begin)
		{
			for (auto& ptr : m_vPChilds)
			{
				if (!ptr)
				{
					continue;
				}
				auto pSearch = ptr->Search(begin + 1, end);
				if (pSearch)
				{
					return pSearch;
				}
			}
			return nullptr;
		}

		auto ptr = GetChild(*begin);
		if (nullptr == ptr)
		{
			return nullptr;
		}
		return ptr->Search(begin + 1, end);
	}
	TData m_data = defData;

	CTrie* AddChar(TData ele)
	{
		if ((ele < cBegin) || (ele >= cBegin + iTypeNum))
		{
			return nullptr;
		}
		const int index = ele - cBegin;
		auto ptr = m_vPChilds[index];
		if (!ptr)
		{
			m_vPChilds[index] = new CTrie();
		}
		return m_vPChilds[index];
	}
	CTrie* GetChild(TData ele)const
	{
		if ((ele < cBegin) || (ele >= cBegin + iTypeNum))
		{
			return nullptr;
		}
		return m_vPChilds[ele - cBegin];
	}
protected:
	int m_iID;
public:
	int m_iLeafID=-1;
protected:
	int m_iLeve=-1;
	
	inline static int s_ID = 0;
	 int m_iLeafCount = 0;
	CTrie* m_vPChilds[iTypeNum] = { nullptr };
};

template<char defData='a', int iTypeNum = 26, char cBegin = 'a'>
class CStrTrieHelp 
{
public:
	int Add(const string& s)
	{
		return m_trie.Add(s.begin(), s.begin() + s.length());
	}
	CTrie<char, defData, iTypeNum, cBegin>* Search(const string& s)
	{
		return m_trie.Search(s.begin(), s.begin() + s.length());
	}
	CTrie<char, defData, iTypeNum, cBegin>* SearchSub(const string& s,int iPos,int len)
	{
		return m_trie.Search(s.begin()+ iPos, s.begin() + iPos + len );
	}
	CTrie<char, defData, iTypeNum, cBegin> m_trie;
};
template<char defData = 'a', int iTypeNum = 26, char cBegin = 'a'>
class CStrIndexs
{
public:
	void Add(const string& s)
	{
		m_trie.Add(s);
	}
	int Seach(const string& s)
	{
		auto p = m_trie.Search(s);
		if (nullptr == p)
		{
			return -1;
		}
		return p->m_iLeafID;
	}
	int SearchSub(const string& s, int iPos, int len)
	{
		auto p = m_trie.SearchSub(s, iPos, len);
		if (nullptr == p)
		{
			return -1;
		}
		return p->m_iDebug;
	}

	CStrTrieHelp<defData, iTypeNum, cBegin> m_trie;
};

//多源码路径
template<class T,T INF = 1000*1000*1000>
class CFloyd
{
public:
	CFloyd(const  vector<vector<T>>& mat)
	{
		m_vMat = mat;
		const int n = mat.size();
		for (int i = 0; i < n; i++)
		{//通过i中转
			for (int i1 = 0; i1 < n; i1++)
			{
				for (int i2 = 0; i2 < n; i2++)
				{
					//此时:m_vMat[i1][i2] 表示通过[0,i)中转的最短距离
					m_vMat[i1][i2] = min(m_vMat[i1][i2], m_vMat[i1][i] + m_vMat[i][i2]);
					//m_vMat[i1][i2] 表示通过[0,i]中转的最短距离
				}
			}
		}		
	};
	vector<vector<T>> m_vMat;
};

class Solution {
public:
	long long minimumCost(string source, string target, vector<string>& original, vector<string>& changed, vector<int>& cost) {
		CStrIndexs strIndexs;
		for (const auto& s : original)
		{
			strIndexs.Add(s);
		}
		for (const auto& s : changed)
		{
			strIndexs.Add(s);
		}
		const int iNotMay = 1000 * 1000 * 1000;
		vector<vector<int>> vMat(strIndexs.m_trie.m_trie.GetLeadCount(), vector<int>(strIndexs.m_trie.m_trie.GetLeadCount(), iNotMay));
		for (int j = 0; j < original.size(); j++)
		{
			const int iSrc = strIndexs.Seach(original[j]);
			const int iDest = strIndexs.Seach(changed[j]);			
			auto& n = vMat[iSrc][iDest];
			n = min(n, cost[j]);
		}
		for (int i = 0; i < strIndexs.m_trie.m_trie.GetLeadCount(); i++)
		{
			vMat[i][i] = 0;
		}
		CFloyd floyd(vMat);
		vector<long long> vRet(source.length() + 1, LLONG_MAX / 1000);
		vRet[0] = 0;
		for (int i = 0; i < source.length(); i++)
		{
			bool bSame = true;
			auto pSrc = &strIndexs.m_trie.m_trie;
			auto pDst = &strIndexs.m_trie.m_trie;
			for (int len = 1; len + i <= source.length(); len++)
			{
				const char ch1 = source[len + i - 1];
				const char ch2 = target[len + i - 1];				
				bSame &= (ch1 == ch2);
				if (nullptr != pSrc)
				{
					pSrc = pSrc->GetChild(ch1);
				}
				if (nullptr != pDst)
				{
					pDst = pDst->GetChild(ch2);
				}
				if (bSame)
				{
					vRet[i + len] = min(vRet[i + len], vRet[i]);
					continue;
				}					
				if ((nullptr == pSrc) || (nullptr == pDst))
				{
					break;
				}
				const int iSrc = pSrc->m_iLeafID;
				const int iDest = pDst->m_iLeafID;
				if ((-1 == iSrc) || (-1== iDest))
				{
					continue;
				}
				const int iDist = floyd.m_vMat[iSrc][iDest];
				if (iDist >= iNotMay)
				{
					continue;
				}
				vRet[i + len] = min(vRet[i + len], vRet[i] + iDist);
			}
		}
		return (vRet.back() >= LLONG_MAX / 1000) ? -1 : vRet.back();
	}
};

第一版超时

//多源码路径
template<class T,T INF = 100010001000>
class CFloyd
{
public:
CFloyd(const vector<vector>& mat)
{
m_vMat = mat;
const int n = mat.size();
for (int i = 0; i < n; i++)
{//通过i中转
for (int i1 = 0; i1 < n; i1++)
{
for (int i2 = 0; i2 < n; i2++)
{
//此时:m_vMat[i1][i2] 表示通过[0,i)中转的最短距离
m_vMat[i1][i2] = min(m_vMat[i1][i2], m_vMat[i1][i] + m_vMat[i][i2]);
//m_vMat[i1][i2] 表示通过[0,i]中转的最短距离
}
}
}
};
vector<vector> m_vMat;
};

class Solution {
public:
long long minimumCost(string source, string target, vector& original, vector& changed, vector& cost) {
vector strs(original.begin(), original.end());
strs.insert(strs.end(), changed.begin(), changed.end());
sort(strs.begin(),strs.end());
strs.erase(std::unique(strs.begin(), strs.end()), strs.end());
std::unordered_map<string, int> mStrToNode;
for (int i = 0; i < strs.size(); i++)
{
mStrToNode[strs[i]] = i;
}
const int iNotMay = 1000 * 1000 * 1000;
vector<vector> vMat(strs.size(), vector(strs.size(), iNotMay));
vector vOriNode;
for (int j = 0; j < original.size(); j++)
{
vOriNode.emplace_back(mStrToNode[original[j]]);
auto& n = vMat[vOriNode.back()][mStrToNode[changed[j]]];
n = min(n,cost[j]);
}
for (int i = 0; i < strs.size(); i++)
{
vMat[i][i] = 0;
}
CFloyd floyd(vMat);
vector vRet(source.length() + 1,LLONG_MAX/1000 );
vRet[0]=0;
for (int i = 0; i < source.length(); i++)
{
if (source[i] == target[i])
{
vRet[i + 1] = min(vRet[i+1],vRet[i]);
//continue; 相等也可以替换
}
for (int j = 0; j < original.size(); j++)
{
const int len = original[j].length();
if (i + len > source.length())
{
continue;
}
if (source.substr(i, len) != original[j])
{
continue;
}
string sDst = target.substr(i, len);
if (!mStrToNode.count(sDst))
{
continue;
}
const int iDest = mStrToNode[sDst];
const int iDist = floyd.m_vMat[vOriNode[j]][iDest];
if (iDist >= iNotMay)
{
continue;
}
vRet[i + len] = min(vRet[i + len],vRet[i]+iDist);
}
}
return (vRet.back() >= LLONG_MAX / 1000) ? -1 : vRet.back();
}
};

第二版超时

//多源码路径
template<class T,T INF = 100010001000>
class CFloyd
{
public:
CFloyd(const vector<vector>& mat)
{
m_vMat = mat;
const int n = mat.size();
for (int i = 0; i < n; i++)
{//通过i中转
for (int i1 = 0; i1 < n; i1++)
{
for (int i2 = 0; i2 < n; i2++)
{
//此时:m_vMat[i1][i2] 表示通过[0,i)中转的最短距离
m_vMat[i1][i2] = min(m_vMat[i1][i2], m_vMat[i1][i] + m_vMat[i][i2]);
//m_vMat[i1][i2] 表示通过[0,i]中转的最短距离
}
}
}
};
vector<vector> m_vMat;
};

class Solution {
public:
long long minimumCost(string source, string target, vector& original, vector& changed, vector& cost) {
vector strs(original.begin(), original.end());
strs.insert(strs.end(), changed.begin(), changed.end());
sort(strs.begin(),strs.end());
strs.erase(std::unique(strs.begin(), strs.end()), strs.end());
std::unordered_map<string, int> mStrToNode;
for (int i = 0; i < strs.size(); i++)
{
mStrToNode[strs[i]] = i;
}
const int iNotMay = 1000 * 1000 * 1000;
vector<vector> vMat(strs.size(), vector(strs.size(), iNotMay));
for (int j = 0; j < original.size(); j++)
{
auto& n = vMat[mStrToNode[original[j]]][mStrToNode[changed[j]]];
n = min(n,cost[j]);
}
for (int i = 0; i < strs.size(); i++)
{
vMat[i][i] = 0;
}
CFloyd floyd(vMat);
vector vRet(source.length() + 1,LLONG_MAX/1000 );
vRet[0]=0;
for (int i = 0; i < source.length(); i++)
{
for (int len = 1; len + i <= source.length(); len++)
{
const string sSrc = source.substr(i, len);
const string sDst = target.substr(i, len);
if (sSrc == sDst)
{
vRet[i + len] = min(vRet[i + len], vRet[i] );
continue;
}
if (!mStrToNode.count(sDst)|| !mStrToNode.count(sSrc))
{
continue;
}
const int iSrc = mStrToNode[sSrc];
const int iDest = mStrToNode[sDst];
const int iDist = floyd.m_vMat[iSrc][iDest];
if (iDist >= iNotMay)
{
continue;
}
vRet[i + len] = min(vRet[i + len], vRet[i] + iDist);
}
}
return (vRet.back() >= LLONG_MAX / 1000) ? -1 : vRet.back();
}
};

第四版超时

template<class TData, TData defData,int iTypeNum = 26, TData cBegin = ‘a’>
class CTrie
{
public:
CTrie()
{

}
template<class IT>
CTrie* Add(IT begin, IT end,const int iDebug)
{
	int iLeve = 0;
	CTrie* pNode = this;
	for (; begin != end; ++begin)
	{
		pNode = pNode->AddChar(*begin);			
		pNode->m_iLeve = iLeve++;
	}
	pNode->m_iDebug = iDebug;
	return pNode;
}
template<class IT>
CTrie* Search(IT begin, IT end)
{
	if (begin == end)
	{
		return this;
	}

	if ('.' == *begin)
	{
		for (auto& ptr : m_vPChilds)
		{
			if (!ptr)
			{
				continue;
			}
			auto pSearch = ptr->Search(begin + 1, end);
			if (pSearch)
			{
				return pSearch;
			}
		}
		return nullptr;
	}

	auto ptr = GetChild(*begin);
	if (nullptr == ptr)
	{
		return nullptr;
	}
	return ptr->Search(begin + 1, end);
}
TData m_data = defData;

CTrie* AddChar(TData ele)
{
	if ((ele < cBegin) || (ele >= cBegin + iTypeNum))
	{
		return nullptr;
	}
	const int index = ele - cBegin;
	auto ptr = m_vPChilds[index];
	if (!ptr)
	{
		m_vPChilds[index] = new CTrie();
	}
	return m_vPChilds[index];
}

CTrie* GetChild(TData ele)const
{
	if ((ele < cBegin) || (ele >= cBegin + iTypeNum))
	{
		return nullptr;
	}
	return m_vPChilds[ele - cBegin];
}

int m_iDebug=-1;

protected:
int m_iLeve=-1;
CTrie* m_vPChilds[iTypeNum] = { nullptr };
};

template<char defData, int iTypeNum = 26, char cBegin = ‘a’>
class CStrTrieHelp
{
public:
CTrie<char, defData, iTypeNum, cBegin>* Add(const string& s,int iDebug)
{
return m_trie.Add(s.begin(), s.begin() + s.length(), iDebug);
}
CTrie<char, defData, iTypeNum, cBegin>* Search(const string& s)
{
return m_trie.Search(s.begin(), s.begin() + s.length());
}
CTrie<char, defData, iTypeNum, cBegin>* SearchSub(const string& s,int iPos,int len)
{
return m_trie.Search(s.begin()+ iPos, s.begin() + iPos + len );
}
CTrie<char, defData, iTypeNum, cBegin> m_trie;
};
template<char defData = ‘a’, int iTypeNum = 26, char cBegin = ‘a’>
class CStrIndexs
{
public:
void Add(const string& s, int iDebug)
{
m_trie.Add(s, iDebug);
}
int Seach(const string& s)
{
auto p = m_trie.Search(s);
if (nullptr == p)
{
return -1;
}
return p->m_iDebug;
}
int SearchSub(const string& s, int iPos, int len)
{
auto p = m_trie.SearchSub(s, iPos, len);
if (nullptr == p)
{
return -1;
}
return p->m_iDebug;
}
protected:
CStrTrieHelp<defData, iTypeNum, cBegin> m_trie;
};

//多源码路径
template<class T,T INF = 100010001000>
class CFloyd
{
public:
CFloyd(const vector<vector>& mat)
{
m_vMat = mat;
const int n = mat.size();
for (int i = 0; i < n; i++)
{//通过i中转
for (int i1 = 0; i1 < n; i1++)
{
for (int i2 = 0; i2 < n; i2++)
{
//此时:m_vMat[i1][i2] 表示通过[0,i)中转的最短距离
m_vMat[i1][i2] = min(m_vMat[i1][i2], m_vMat[i1][i] + m_vMat[i][i2]);
//m_vMat[i1][i2] 表示通过[0,i]中转的最短距离
}
}
}
};
vector<vector> m_vMat;
};

class Solution {
public:
long long minimumCost(string source, string target, vector& original, vector& changed, vector& cost) {
vector strs(original.begin(), original.end());
strs.insert(strs.end(), changed.begin(), changed.end());
sort(strs.begin(), strs.end());
strs.erase(std::unique(strs.begin(), strs.end()), strs.end());
CStrIndexs strIndexs;
for (int i = 0; i < strs.size(); i++)
{
strIndexs.Add(strs[i], i);
}
const int iNotMay = 1000 * 1000 * 1000;
vector<vector> vMat(strs.size(), vector(strs.size(), iNotMay));
for (int j = 0; j < original.size(); j++)
{
const int iSrc = strIndexs.Seach(original[j]);
const int iDest = strIndexs.Seach(changed[j]);
auto& n = vMat[iSrc][iDest];
n = min(n, cost[j]);
}
for (int i = 0; i < strs.size(); i++)
{
vMat[i][i] = 0;
}
CFloyd floyd(vMat);
vector vRet(source.length() + 1, LLONG_MAX / 1000);
vRet[0] = 0;
for (int i = 0; i < source.length(); i++)
{
bool bSame = true;
for (int len = 1; len + i <= source.length(); len++)
{
bSame &= (source[len + i - 1] == target[len + i - 1]);
if (bSame)
{
vRet[i + len] = min(vRet[i + len], vRet[i]);
continue;
}
const int iSrc = strIndexs.SearchSub(source, i, len);
const int iDest = strIndexs.SearchSub(target, i, len);
if ((-1 == iSrc) || (-1== iDest))
{
continue;
}
const int iDist = floyd.m_vMat[iSrc][iDest];
if (iDist >= iNotMay)
{
continue;
}
vRet[i + len] = min(vRet[i + len], vRet[i] + iDist);
}
}
return (vRet.back() >= LLONG_MAX / 1000) ? -1 : vRet.back();
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法C++ 实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/274371.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python+OpenGL绘制3D模型(六)材质文件载入和贴图映射

系列文章 一、逆向工程 Sketchup 逆向工程&#xff08;一&#xff09;破解.skp文件数据结构 Sketchup 逆向工程&#xff08;二&#xff09;分析三维模型数据结构 Sketchup 逆向工程&#xff08;三&#xff09;软件逆向工程从何处入手 Sketchup 逆向工程&#xff08;四&#xf…

家庭教育小妙招让孩子做事学会坚持到底

在生活中&#xff0c;我们常常会遇到一些孩子&#xff0c;他们做事情总是三分钟热度&#xff0c;不能坚持到底。而在面对困难时&#xff0c;他们很容易选择放弃。 看似是孩子缺乏热情&#xff0c;其实这是孩子缺乏自制力和毅力的表现。作为家长&#xff0c;我们需要培养孩子的…

开源项目推荐:Frooodle/Stirling-PDF

简介一个本地的处理 PDF 的工具&#xff0c;界面是 Web UI&#xff0c;可以支持 Docker 部署。各种主要的 PDF 操作都可以支持。比如拆分、合并、转换格式、重新排列、添加图片、旋转、压缩等等。这个本地托管的网络应用最初完全由 ChatGPT 制作&#xff0c;后来逐渐发展&#…

MySQL常用命令合集(Mac版)

mysql信息 MySQL位置 which mysql查看版本 mysql --version启动与关闭 使用mysql.server启用脚本来执行&#xff0c;默认在/usr/local/mysql/support-files这个目录中。 启动 sudo /usr/local/mysql/support-files/mysql.server start关闭 sudo /usr/local/mysql/suppor…

人体检测、跟踪实例 | 附代码

人体检测和跟踪是一项基本的计算机视觉任务&#xff0c;涉及在给定场景中识别并跟踪个体的移动。这项技术在各种实际应用中发挥着关键作用&#xff0c;从监视和安全到自动驾驶车辆和人机交互都有涉及。人体检测的主要目标是在图像或视频帧中定位和分类人体&#xff0c;而跟踪侧…

KVM 自动化脚本使用方法

一、介绍 目录结构介绍 [rootkvm-server kvm]# tree -L 2 . ├── control # 控制脚本目录 │ ├── KVMInstall.sh # kvm服务安装脚本 │ ├── VMHost.sh # kvm虚拟机克隆脚本 │ └── VMTemplate.sh # kvm模板机安装脚本 ├── mount # 此目录保持为空&…

代码随想录刷题笔记(DAY1)

前言&#xff1a;因为学校的算法考试让我认识了卡哥&#xff0c;为了下学期冲击大厂实习的理想&#xff0c;我加入了卡哥的算法训练营&#xff0c;从今天开始我每天会更新自己的刷题笔记&#xff0c;与大家一起打卡&#xff0c;一起共勉&#xff01; Day 1 01. 二分查找 &…

科研学习|论文解读——融合类目偏好和数据场聚类的协同过滤推荐算法研究

论文链接&#xff08;中国知网&#xff09;&#xff1a; 融合类目偏好和数据场聚类的协同过滤推荐算法研究 - 中国知网 (cnki.net) 摘要&#xff1a;[目的/意义]基于近邻用户的协同过滤推荐作为推荐系统应用最广泛的算法之一&#xff0c;受数据稀疏和计算可扩展问题影响&#x…

时序预测 | Matlab实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元时间序列预测

时序预测 | Matlab实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元时间序列预测 目录 时序预测 | Matlab实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现SSA-CNN-GRU麻雀算法优化卷积门控循环单元时间序…

RK3568平台(中断篇) 中断的基本概念

一.中断的基本概念 中断是操作系统中至关重要的机制&#xff0c;它能够显著提高系统的响应性能和并发处理能力。 中断是指在 CPU 正常运行期间&#xff0c;由外部或内部事件引起的一种机制。当中断发生时&#xff0c;CPU会停止当前正在执行的程序&#xff0c;并转而执行触发该…

Sql 动态行转列

SELECT ID, Name, [Month],auth FROM dbo.Test3 数据列表&#xff1a; 1.静态行专列 Select auth, MAX( CASE WHEN [Month] 一月 then Name else null end) 一月, MAX( CASE WHEN [Month] 二月 then Name else null end) 二月, MAX( CASE WHEN…

智慧监控平台/AI智能视频EasyCVR接口调用编辑通道详细步骤

视频监控TSINGSEE青犀视频平台EasyCVR能在复杂的网络环境中&#xff0c;将分散的各类视频资源进行统一汇聚、整合、集中管理&#xff0c;在视频监控播放上&#xff0c;GB28181视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放&#xff0c;可同时播放多路视频流&#xff0c…

对于c++的总结与思考

笔者觉得好用的学习方法&#xff1a;模板法 1.采用原因&#xff1a;由于刚从c语言面向过程的学习中解脱出来&#xff0c;立即把思路从面向过程转到面向对象肯定不现实&#xff0c;加之全新的复杂语法与操作&#xff0c;着实给新手学习这门语言带来了不小的困难。所以&#xff…

JavaScript 工具库 | PrefixFree给CSS自动添加浏览器前缀

新版的CSS拥有多个新属性&#xff0c;而标准有没有统一&#xff0c;有的浏览器厂商为了吸引更多的开发者和用户&#xff0c;已经加入了最新的CSS属性支持&#xff0c;这其中包含了很多炫酷的功能&#xff0c;但是我们在使用的时候&#xff0c;不得不在属性前面添加这些浏览器的…

获取Android和iOS崩溃日志的方法

文章目录 一、Android崩溃日志1、获取方法1.1 通过adb logcat获取1.2 通过adb shell dumpsys dropbox命令获取 2、导出设备Crash日志3、导出设备ANR日志4、常见日志类别 二、iOS崩溃日志1、获取方法1.1 xcode中打开1.2 手机上直接获取 2、Crash 头部信息 一、Android崩溃日志 …

视频格式网络地址转换视频到本地,获取封面、时长,其他格式转换成mp4

使用ffmpeg软件转换网络视频&#xff0c;先从官网下载对应操作系统环境的包 注意:网络地址需要是视频格式结尾&#xff0c;例如.mp4,.flv 等 官网地址&#xff1a;Download FFmpeg window包&#xff1a; linux包&#xff1a; 如果下载缓慢&#xff0c;下载迅雷安装使用…

干掉程序员饭碗的会是 AI 吗?

你好&#xff0c;我是坚持分享干货的 EarlGrey&#xff0c;翻译出版过《Python编程无师自通》、《Python并行计算手册》等技术书籍。 如果我的分享对你有帮助&#xff0c;请关注我&#xff0c;一起向上进击。 创作不易&#xff0c;希望大家给一点鼓励&#xff0c;把公众号设置为…

0.1+0.2≠0.3,揭秘Python自带的Bug

朋友们&#xff0c;问一个简单的问题&#xff1a;0.10.2&#xff1f; 你肯定会说&#xff1a;中国人不骗中国人&#xff0c;0.10.20.3。 但是在Python里&#xff0c;0.10.2≠0.3 &#xff0c;我们今天一起来看看这个&#xff0c;并且看一下解决办法。 离奇的错误 在python里…

【C语言】自定义类型:结构体深入解析(三)结构体实现位段最终篇

文章目录 &#x1f4dd;前言&#x1f320;什么是位段&#xff1f;&#x1f309; 位段的内存分配&#x1f309;VS怎么开辟位段空间呢&#xff1f;&#x1f309;位段的跨平台问题&#x1f320; 位段的应⽤&#x1f320;位段使⽤的注意事项&#x1f6a9;总结 &#x1f4dd;前言 本…

内网离线搭建之----kafka-manager集群监控

工具介绍: 为了简化开发者和服务工程师维护Kafka集群的工作&#xff0c;yahoo构建了一个叫做Kafka管理器的基于Web工具&#xff0c;叫做 Kafka Manager。 这个管理工具可以很容易地发现分布在集群中的哪些topic分布不均匀&#xff0c;或者是分区在整个集群分布不均匀的的情况…