机器学习算法分类(三)

在机器学习中,又分为监督学习、无监督学习、半监督学习、强化学习和深度学习。

监督、无监督、半监督学习

机器学习根据数据集是否有标签,又分为监督学习、无监督学习、半监督学习。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7daO0Gcs-1686306684846)(image/image-20230603104813945.png)]

  1. 监督学习:训练数据集全部都有标签
  2. 无监督学习:训练数据集全部没有标签
  3. 半监督学习:训练数据集有的有标签,有的没有标签。

监督学习数据集全部都有标签,根据标签的特点,监督学习又分为回归问题和分类问题。

  1. 回归问题:标签是连续的数值。是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析,说白了就是当自变量变化的时候,研究一下因变量是怎么跟着变化的。比如说电商场景中的销量预测、客户生命周期价值预测等。
  2. 分类问题:标签是离散型数值。就是将数据分为不同的类别(标签)。通常用于图像识别、文本分类等分类问题。

在这里插入图片描述

无监督学习应用于没有标签的数据集。它通过数据出发,自动寻找规律,通常应用在聚类、降维等有限场景中。

无监督学习聚类方法是一种将数据集中的对象分组的方法,分成多个不同的组。其目的是使组内对象相似度尽可能高,组间对象相似度尽可能低。

半监督学习是介于监督学习和无监督学习之间的一种学习方法,这种机器学习类型的应用通常是因为获取数据标签难度很高。它利用少量的带标签数据和大量的未标记数据来训练模型,以达到提高模型预测性能的目的。在半监督学习中,带标签数据通常是由领域专家手动标注的,而未标记数据则是从大量的无标签数据中获取的。

哪种监督学习更为常用?

监督学习是应用最广泛的机器学习算法,无监督学习在聚类场景中使用更多,例如 为用户做分组画像。半监督学习应用场景比较少,目前我还没遇见过,感兴趣的自行了解。

强化学习

强化学习与人类的学习方式最为相似。强化学习是一种通过试错的方式,从环境中学习最优决策策略的机器学习方法。智能体(agent)通过与环境交互,获得奖励信号来学习如何做出最好的决策。它通过反复的试错、不断的收集反馈,不断的学习,不断地训练使得它会变得越来越强。

强化学习和监督学习的差异在于:监督学习是从数据中学习,而强化学习是从环境给它的奖惩中学习。

强化学习在机器人、汽车自动驾驶领域应用广泛。
在这里插入图片描述
举个小例子:人训练🐶,当人给🐶一个手势时,如果🐶正确执行了我们的指令,那我们就给它骨头奖励;如果🐶不执行我们的指令,那我们就给它一些惩罚,通过一定时间的反复训练,🐶就学会了执行人类的指令。这是一样的道理。
在这里插入图片描述

深度学习

科学家生物神经元的启发,照葫芦画瓢创建除了人工神经网络,然后发现这玩意还挺好用。神经网络的发展由最开始的单层神经网络发展到深层神经网络,而深层神经网络中,卷积神经网络可以说是大杀四方,它在语音识别、自然语言处理和计算机视觉领域被广泛应用。

深度学习是一种基于神经网络算法的机器学习技术,它通过多层神经网络来学习高级抽象特征并进行模式识别和预测。

深度学习擅长对非结构的数据集进行自动的复杂特征提取。它并不是一种独立于其他类型机器学习算法,它可以应用在监督学习、半监督学习和无监督学习和强化学习中。

神经网络是一种计算模型,它受到生物神经元的启发,通过多个神经元的组合和连接,实现对输入数据的处理和预测。

神经网络由多个神经元组成,每个神经元接收一组输入,并产生一个输出。神经网络通常由多个层次组成,包括输入层、隐藏层和输出层。

  1. 输入层是神经网络的第一层,它接收输入数据,并将其传递到下一层。
  2. 隐藏层是神经网络的中间层,通过对输入数据进行加权和激活函数的处理,实现了对复杂特征的提取。
  3. 输出层是神经网络的最后一层,输出层将经过处理的数据转化为输出结果,并与实际结果进行比较,以计算损失函数并更新模型参数。
    在这里插入图片描述
    神经网络的工作原理可以分为前向传播和反向传播两个过程。

1、 前向传播:输入信号从输入层开始,经过一系列的加权求和和激活函数处理后,传递给下一层神经元,下一层神经元的输入是上一次神经元的输出,这个过程一直持续到输出层,得到最终的计算结果。
2、 反向传播:根据输出层的计算结果和实际目标值计算误差,然后按原路径反向传播误差,它通过将损失函数反向传播到神经网络中的每个神经元,以更新神经元的权重和偏置,以最小化误差。这个过程可以通过梯度下降等优化算法实现。

通过不断地前向传播和反向传播,神经网络学会了从输入数据中提取有用的特征,使得我们的模型精度逐渐提升,以完成分类、预测等任务。

神经网络在图像识别、自然语言处理、推荐系统等领域中取得了显著的成果。在图像识别领域,(CNN)卷积神经网络通过对图像进行卷积和池化等操作,实现对图像的特征提取和分类。在自然语言处理领域,(RNN)循环神经网络通过对文本序列进行处理,实现对文本的理解和生成。在推荐系统领域,(DNN)深度神经网络通过对用户和物品的数据进行处理和分析,实现对用户的个性化推荐和优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/27240.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

javaScript蓝桥杯---传送门

目录 一、介绍二、准备三、目标四、代码五、知识点六、完成 一、介绍 日常浏览网页的时候,我们会发现一个问题,当页面太长、内容太多的时候我们很难快速浏览到心仪的内容。为了解决这个烦恼,优秀的产品研发团队发明了一种类似传送门的功能&a…

深度学习的各种卷积的总结

如果你听说过深度学习中不同种类的卷积(比如 2D / 3D / 1x1 /转置/扩张(Atrous)/空间可分/深度可分/平展/分组/混洗分组卷积),并且搞不清楚它们究竟是什么意思,那么这篇文章就是为你写的,能帮你…

STM32单片机GPS北斗无线防丢定位超出距离报警系统NRF24L01

实践制作DIY- GC0136-GPS北斗无线防丢定位超出距离报警系统 基于STM32单片机设计-GPS北斗无线防丢定位超出距离报警系统 二、功能介绍: 主机:STM32F103CxT6系列最小系统板OLED显示器NRF24L01无线通讯模块GPS北斗双模定位模块蜂鸣器距离加减2个按键1个模…

BurpSuite2023测试越权漏洞

BurpSuite2023测试越权漏洞 BurpSuite安装创建项目 - 打开内置浏览器越权漏洞测试问题处理 BurpSuite安装 官网下载社区版并安装,下载地址:链接: https://portswigger.net/burp 安装成功后图标 创建项目 - 打开内置浏览器 打开BurpSuite&#xff0c…

为何要将行驶证转为Excel?在线怎么操作?需要注意些什么?

一、为何要将行驶证转为excel表格?有何好处? 将行驶证转为Excel一般是为了方便信息的整理和管理。将行驶证上的信息录入Excel表格中,可以实现快速搜索、排序和筛选等功能,避免了手动整理信息的繁琐和容易出错的问题。此外&#xf…

Lecture 17 Machine Translation

目录 Statistical MTNeural MTAttention MechanismEvaluationConclusion Machine translation (MT) is the task of translating text from one source language to another target language why? Removes language barrierMakes information in any languages accessible t…

chatgpt赋能python:Python如何从右往左取数

Python如何从右往左取数 在Python编程中,有时候需要从右往左获取列表、字符串等数据结构的元素,而不是从左往右。这样做的好处在于可以更快地访问最后几个元素,或者进行一些反向操作。本文将介绍Python中从右往左取数的方法。 索引与切片 …

JDBC Utils 详解(通俗易懂)

目录 一、前言 二、JDBCUtils说明 1.背景及起因 : 2.示意图 : 3.JDBCUtils类的定义 三、JDBCUtils应用 1.DML的应用 : 2.DQL的应用 : 四、总结 一、前言 第三节内容,up主要和大家分享一下JDBC Utils方面的内容。注意事项——①代码中的注释也很重要&#x…

性能测试loadrunner

目录 基本概念 性能工具jemeter代码调试 loadrunner实战代码笔记 使用Loadrunner的步骤 性能指标分析结果 基本概念 一、什么是性能: 性能:是用来描述产品除功能外的所具有的速度,效率和能力的综合能力评价。 二、什么是性能测试&…

leetcode61. 旋转链表(java)

旋转链表 leetcode61. 旋转链表题目描述 解题思路代码演示链表专题 leetcode61. 旋转链表 Leetcode链接: https://leetcode.cn/problems/rotate-list/ 题目描述 给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置。 示例…

基于graalvm和java swing制作一个文件差异对比的原生应用,附源码

文章目录 1、DFDiff介绍2、软件架构3、安装教程3.1、编译为jar包运行3.2、编译为原生应用运行 4、运行效果图5、项目源码地址 1、DFDiff介绍 当前已实现的功能比较两个文件夹内的文件差异,已支持文件差异对比。 2、软件架构 软件架构说明 开发环境是在OpenJDK17&…

数据结构与算法之链表

目录 单链表概念单链表操作循环链表概念循环链表操作双向循环链表概念双向循环链表操作单链表 概念 单链表也叫单向链表,是链表中最简单的一种形式,它的每个节点包含两个域,一个信息域(元素域)和一个链接域。这个链接指向链表中的下一个节点,而最后一个节点的链接域则指…

K-verse 合作伙伴访谈|与 Studio Dragon 一起进入韩剧元宇宙世界

穿越时空的韩剧元宇宙。 Studio Dragon 是全球排名第一的生活创作者 CJ ENM 的子公司,是引领韩剧的韩国代表性戏剧工作室,一个以无限故事内容让世界着迷的优质故事讲述者。 通过与 The Sandbox 的合作,我们将提供一种全新体验,让用…

C++——类型转换

目录 C语言中的类型转换 为什么C需要四种类型转换 1、static_cast 2、reinterpret_cast 3、const_cast 4、dynamic_cast 关于const的典型例题 分析下列结果的原因 原因 C语言中的类型转换 //类型转换int main() {int i 1;// 隐式类型转换double d i;printf("%d,…

Docker是什么、有什么用的介绍

文章目录 1.背景2. Docker 是什么?3.Docker 容器与虚拟机的区别4.Docker 的 6 大优势1、更高效地利用系统资源2、更快的启动时间3、一致的运行环境4、持续交付和部署5、更轻松迁移6、更轻松的维护和拓展 小结 知识搬运工: 原文出自: 原文链接…

一键生成代码

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…

C++/C按照时间命名保存bin文件

背景 在Linux应用编程过程中,使用C或者C语言保存、读取bin文件是比较常见的需求。这里详细记录一下使用C保存bin文件,也可以使用C语言实现。 代码 C/C语言保存bin文件函数,C中也能使用 正确写入返回0,错误返回-1 // C 保存bi…

ASP.NET Core Web API入门:创建新项目

ASP.NET Core Web API入门:创建新项目 一、引言二、创建新项目三、加入Startup类,并替换Program.cs内容四、编辑Program.cs代码五、修改控制器的路由六、运行项目 一、引言 最近闲着,想着没真正从0-1开发过ASP.NET Core Web API的项目&#…

找不到xinput1_3.dll怎么办?xinput1_3.dll丢失的四个修复方法

在我们打开游戏的或者软件的时候,电脑提示“找不到xinput1_3.dll,无法继续执行此代码”怎么办?相信困扰着不少小伙伴,我再在打开吃鸡的时候,然后花了一上午的时候时间研究,现在终于知道xinput1_3.dll文件是…

中国电子学会2023年05月份青少年软件编程Scratch图形化等级考试试卷三级真题(含答案)

2023-05 Scratch三级真题 分数:100 题数:38 测试时长:60min 一、单选题(共25题,共50分) 1. 关于变量,下列描述错误的是?(A )(2分) A.只能建一个变量 …