知识概览
- Dijkstra算法适用于解决所有边权都是正数的最短路问题。
- Dijkstra算法分为朴素的Dijkstra算法和堆优化版的Dijkstra算法。
- 朴素的Dijkstra算法时间复杂度为,适用于稠密图。堆优化版的Dijkstra算法时间复杂度为,适用于稀疏图。
- 稠密图的边数m和是一个级别的,稀疏图的边数m和点数n是一个级别的。
朴素的Dijkstra算法
例题展示
题目链接
活动 - AcWing系统讲解常用算法与数据结构,给出相应代码模板,并会布置、讲解相应的基础算法题目。https://www.acwing.com/problem/content/description/851/
代码
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 510;
int n, m;
int g[N][N];
int dist[N];
bool st[N];
int dijkstra()
{
// dist[1] = 0, dist[i] = 无穷大
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for (int i = 0; i < n - 1; i++)
{
int t = -1;
for (int j = 1; j <= n; j++)
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j; // t为不在st为false的距离最近的点
st[t] = true;
// 用t更新其它点的距离
for (int j = 1; j <= n; j++)
dist[j] = min(dist[j], dist[t] + g[t][j]);
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
scanf("%d%d", &n, &m);
memset(g, 0x3f, sizeof g);
while (m--)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
g[a][b] = min(g[a][b], c); // 重边取最小距离
}
int t = dijkstra();
printf("%d\n", t);
return 0;
}
堆优化版的Dijkstra算法
例题展示
题目链接
活动 - AcWing系统讲解常用算法与数据结构,给出相应代码模板,并会布置、讲解相应的基础算法题目。https://www.acwing.com/problem/content/852/
代码
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef pair<int, int> PII;
const int N = 150010;
int n, m;
int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N];
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1});
while (heap.size())
{
auto t = heap.top();
heap.pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue;
st[ver] = true;
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > distance + w[i])
{
dist[j] = distance + w[i];
heap.push({dist[j], j});
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
while (m--)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
int t = dijkstra();
printf("%d\n", t);
return 0;
}
参考资料
- AcWing算法基础课