智能算法(GA、DBO等)求解零空闲流水车间调度问题(NIFSP)

先做一个声明:文章是由我的个人公众号中的推送直接复制粘贴而来,因此对智能优化算法感兴趣的朋友,可关注我的个人公众号:启发式算法讨论。我会不定期在公众号里分享不同的智能优化算法,经典的,或者是近几年提出的新型智能优化算法,并附MATLAB代码。

本期的主要参考资料:

[1] 潘全科, 高亮, 李新宇. 流水车间调度及其优化算法[M]. 武汉: 华中科技大学出版社, 2013.

不允许机器停止运转,这就是所谓的零空闲调度问题。图1(a)所示为一个3×3的零空闲流水车间调度问题的甘特图,由于机器连续运转的要求,当第一个工件到达机器2时,该机器并不能立即开工。与图1(b)所示的置换流水车间调度相比,机器2的开工时间有所滞后。因此,零空闲流水车间调度问题不同于一般的置换流水车间调度问题。

图片

图1

01
问题描述

这里主要考虑以最大完成时间为优化目标的零空闲流水车间调度问题(no-idle flow-shop scheduling problem, NIFSP),记为Fm|perm, no-idle|Cmax。当m≥3时,这类调度问题就是NP-Hard 问题。

Fm|perm, no-idle|Cmax问题可描述为:有n个工件按照相同的工艺路线在m台机器上加工,约定所有机器上工件的加工次序都相同,要求在同一机器上加工的相邻两工件之间没有空闲时间。假设机器之间存在无限大的缓冲区,一个工件不能同时由多台机器加工,一台机器也不能同时加工多个工件。已知工件在各机器上的加工时间。问题是如何安排各工件的生产次序,使得最大完成时间取值最小。

02
数学模型

(以下内容截自推文开头提到的参考书籍,潘老师的那本书。)

图片

图片

03
加工性能指标计算

最大完成时间(Cmax)是研究零空闲流水车间调度问题最常用的加工性能指标。NIFSP的最大完工时间有五种计算方法,其时间复杂度均为O(nm)。

方法一:计算机器之间的开工时间差

方法二:Kalezynski和Kamburowski方法(转化为F2|perm|Cmax)

方法三:前向计算法

方法四:反向计算法

方法五:双向计算法

这里主要介绍前向计算法。(以下内容截自推文开头提到的参考书籍,潘老师的那本书。)其他计算方法也可以在这本书籍里查阅。选择前向计算法是为了方便画甘特图。

图片

图片

图片

04
智能算法(GA、DBO等)编码方法

对于遗传算法(GA),因为其算法本身是离散的,通过选择、交叉、变异产生下一代。因此,一条染色体就代表一种调度方案。即工件的排序即是它的个体编码。例如,10个工件的排序方案,用MATLAB初始化GA的一个个体(一条染色体)就是:

x=randperm(10);

效果如下所示:

图片

但是对于粒子群优化(PSO)、麻雀搜索算法(SSA)、蜣螂优化(DBO)等,它们本身是针对连续优化问题提出的,所以在编码时需要经过进一步的处理。与GA一样,一个调度方案(工件排序)表示一个个体,可以采用SPV规则,将实数编码转成整数编码。例如,10个工件的排序方案,用MATLAB初始化DBO的一个个体(一条染色体)就是:

jobNum=10; % 工件数x=unifrnd(0,1,[1 jobNum]); % 产生10个[0,1]之间随机数os = 1:1:jobNum; % 产生从1到10的数列[~, up_index] = sort(x); % 对x进行降序排序, 得到位置序列x = os(up_index); % 按照位置序列排序工件, 得到一个调度方案

效果如下:

图片

此外,与SPV规则相反,Li等提出最大排序值法(Largest rank value, LRV),也是将连续值映射成离散排列常用的方法之一。如图2所示,LRV将代表种群个体的一组连续值按降序排列生成一组工件排序。(参考文献:[2] LI X, YIN M. An opposition-based differential evolution algorithm for permutation flow shop scheduling based on diversity measure [J]. Advances in Engineering Software, 2013, 55(8): 10-31.)

图片

图2 最大排序值法的表示方法

05
数值实验

这里对DBO求解NIFSP的效果进行简单测试,调度问题算例选用Rec(21个)。最大迭代次数T设置为2000,种群规模NP设为60。下面展示的结果都是算法随机运行一次得到的结果。

首先,以Rec05(20工件×5机器为例),展示DBO随机运行一次的求解结果。图3绘制了种群每代的最优适宜度收敛曲线和平均适宜度收敛曲线:

图片

图3 DBO-NIFSP对于Rec05的收敛曲线

图4绘制了调度结果的甘特图:

图片

图4 DBO-NIFSP对于Rec05的甘特图

其次,以Rec11(20工件×10机器为例),展示DBO随机运行一次的求解结果,如图5和图6所示。

图片

图5 DBO-NIFSP对于Rec11的收敛曲线

图片

图6 DBO-NIFSP对于Rec11的甘特图

最后,以Rec41(75工件×20机器为例),展示DBO随机运行一次的求解结果,如图7和图8所示。

图片

图7 DBO-NIFSP对于Rec41的收敛曲线

图片

图8 DBO-NIFSP对于Rec41的甘特图

06
MATLAB代码

智能算法(GA、PSO、DE、GWO、SSA、DBO等)求解零空闲流水车间调度问题(no-idle flow-shop scheduling problem, NIFSP)的MATLAB代码,其中:main.m是主函数,直接运行即可;以算法简称命名的.m算法代码;gantt_chart.m用来绘制甘特图;objective.m是目标函数,即计算Makespan;method.pdf用来说明Makespan的计算方法,代码采用的是前向计算方法;Car.xlsx和Rec.xlsx是流水车间调度的两个经典测试集。

输出结果包括Makespan、工件排序、计算时间、最优适宜度收敛曲线、平均适宜度收敛曲线、甘特图。

博主选择了十种算法来求解NIFSP。主要是几种经典算法和几个近几年的高引算法。对应的MATLAB代码链接如下:

遗传算法(GA)求解NIFSP

差分进化(DE)求解NIFSP关注公众号,里面有链接
粒子群优化(PSO)求解NIFSP关注公众号,里面有链接
灰狼优化(GWO)求解NIFSP关注公众号,里面有链接
鲸鱼优化算法(WOA)求解NIFSP关注公众号,里面有链接
哈里斯鹰优化(HHO)求解NIFSP关注公众号,里面有链接
麻雀搜索算法(SSA)求解NIFSP关注公众号,里面有链接
非洲秃鹫优化算法(AVOA)求解NIFSP关注公众号,里面有链接
蜣螂优化(DBO)求解NIFSP关注公众号,里面有链接
星鸦优化算法(NOA)求解NIFSP关注公众号,里面有链接
以上十种智能优化算法(GA、DE、PSO、GWO、WOA、HHO、SSA、AVOA、DBO、NOA)求解NIFSP的全家桶关注公众号,里面有链接

可通过下方链接下载代码清单,在里面寻找需要的算法代码,然后去对应的链接获取。清单会同步更新,一旦有新的代码,就可以在清单里找到。清单里面有部分代码是开源获取的。可随时免费下载。

链接:https://pan.baidu.com/s/1SFDMplrL7tiqGZlrpOSGYg

提取码:8023

此外,欢迎添加算法交流群进行交流:912369858

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/268473.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

6G未来的潜在应用场景

虽然目前6G还不是一种可行技术,但是离6G技术成熟和普及的时间应该不远了。未来6G一旦普及,将能够支持全球更大的设备网络,彻底改变医疗保健等行业的应用,并将有助于更多技术的开发和普及。 虽然过渡到6G技术需要时间,…

【C++11/17】std::map高效插入

我们在使用stl的映射容器std::map时,经常需要向容器中插入数据。由于map的元素key值是唯一的,我们经常遇到这样的场景: 向map中插入元素时,指定的key已经存在则直接更新;指定的key不存在,然后才做插入操作…

解读SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC

SPP与SPPF 一、SPP的应用的背景 在卷积神经网络中我们经常看到固定输入的设计,但是如果我们输入的不能是固定尺寸的该怎么办呢? 通常来说,我们有以下几种方法: (1)对输入进行resize操作,让他们…

Netty-4-网络编程模式

我们经常听到各种各样的概念——阻塞、非阻塞、同步、异步,这些概念都与我们采用的网络编程模式有关。 例如,如果采用BIO网络编程模式,那么程序就具有阻塞、同步等特质。 诸如此类,不同的网络编程模式具有不同的特点&#xff0c…

linux循环调度执行

9.2 循环调度执行 9.2.1 简介 cron的概念和crontab是不可分割的。 ​ crontab是一个命令,常见于Unix和Linux的操作系统之中用于设置周期性被执行的指令。 ​ 该命令从标准输入设备读取指令,并将其存放于“crontab”文件中,以供之后读取和执…

文章标题(备注)

现在也裁员了吗?怎么感觉越来越垃圾 这个又是什么?真搞笑,我也没开隐私呀

Linux:jumpserver介绍(1)

官方网站 JumpServer - 开源堡垒机 - 官网https://www.jumpserver.org/ JumpServer 是广受欢迎的开源堡垒机,是符合 4A 规范的专业运维安全审计系统。JumpServer 帮助企业以更安全的方式管控和登录所有类型的资产,实现事前授权、事中监察、事后审计&…

本地搜索文件太慢怎么办?用Everything搜索秒出结果(附安装包)

每次用电脑本地的搜索都慢的一批,后来发现了一个搜索利器 基本上搜索任何文件都不用等待。 并且页面非常简洁,也没有任何广告,用起来非常舒服。 软件官网如下: voidtools 官网提供三个版本,用起来差别不大。 网盘链…

复分析——第1章——复分析准备知识(E.M. Stein R. Shakarchi)

第一章 复分析准备知识 (Preliminaries to Complex Analysis) The sweeping development of mathematics during the last two centuries is due in large part to the introduction of complex numbers; paradoxically, this is based on the seemingly absurd no…

Shell三剑客:awk(awk编辑编程)一

一、awk脚本定义格式 格式1: BEGIN{} pattern{} END{}格式2: #!/bin/awk -f #add x right BEGIN{} pattern{} END{} BEGIN{ 这里面放的是执行前的语句 }END {这里面放的是处理完所有的行后要执行的语句 }{这里面放的是处理每一行时要执行的语句}格式1假…

整数规划-割平面法

整数规划-割平面法 割平面法思想Gomorys割平面法原理实例 谨以此博客作为学习期间的记录。 割平面法思想 在之前,梳理了分支定界法的流程:分支定界法 除了分支定界法,割平面法也是求解整数规划的另一个利器。 我们已经知道,线性规划的可行域…

智能优化算法应用:基于广义正态分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于广义正态分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于广义正态分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.广义正态分布算法4.实验参数设定…

Grafana二进制部署并配置prometheus数据源

1、获取grafna二进制安装包 https://grafana.com/grafana/download?pggraf&plcmtdeploy-box-1 grafana官网下载地址 [rootambari-hadoop1 ~]# cd /opt/module/grafana/ [rootambari-hadoop1 grafana]# pwd /opt/module/grafana2、在安装自己的安装目录执行 wget https:…

国漫风向标!2023年玄机科技斩获6项腾讯金鹅荣誉

12月16日,2023腾讯视频金鹅荣誉发布,玄机科技凭借其卓越的制作实力和市场认可度,斩获了6项大奖!这一荣誉的背后,是玄机科技无数次的创新与突破,也是对其不懈努力的肯定与鼓励。 玄机科技一直以其精良的制作…

半导体晶圆制造SAP:助力推动新时代科技创新

随着科技的迅猛发展,半导体行业成为了推动各行各业进步的重要力量。而半导体晶圆制造作为半导体产业链的核心环节,其效率和质量的提升对于整个行业的发展起着决定性的作用。在这个高度竞争的行业中,如何提升制造过程的效率、降低成本&#xf…

显示器屏幕oled的性能、使用场景、维护

OLED显示器屏幕具有许多独特的性能和使用场景,以下是关于OLED显示器屏幕的性能、使用场景和维护的详细介绍: 一、性能 色彩鲜艳:OLED显示器屏幕能够呈现出更加鲜艳的色彩,色彩饱和度高,色彩还原性好,可以给…

Linux命令指南

Linux上显示某个进程的线程方式 方法一&#xff1a;PS 在ps命令中&#xff0c;“-T”选项可以开启线程查看。下面的命令列出了由进程号为的进程创建的所有线程。 ps -T -p <pid>“SPID”栏表示线程ID&#xff0c;而“CMD”栏则显示了线程名称。 方法二&#xff1a; T…

【Python从入门到进阶】45、Scrapy框架核心组件介绍

接上篇《44、Scrapy的基本介绍和安装》 上一篇我们学习了Scrapy框架的基础介绍以及环境的搭建&#xff0c;本篇我们来学习一下Scrapy框架的核心组件的使用。 下面的核心组件的介绍&#xff0c;仍是基于这幅图的机制&#xff0c;大家可以再回顾一下&#xff1a; 注&#xff1a;…

2023年浙大城市学院新生程序设计竞赛(同步赛)G

登录—专业IT笔试面试备考平台_牛客网 题意 思路 首先想法非常单一&#xff0c;一定是去枚举操作点&#xff0c;然后看它染白和不染的价值差值 也就是说&#xff0c;把一个黑色结点染白之后&#xff0c;对哪些结点的价值会影响 不难想象其实就是操作结点的子树和该点连通的…

【C++】开源:FLTK图形界面库配置与使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍FLTK图形界面库配置与使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#xff0…