1.倒排索引 2.逻辑斯提回归算法

在这里插入图片描述

1.倒排索引

https://help.aliyun.com/zh/open-search/retrieval-engine-edition/introduction-to-inverted-indexes

倒排索引(Inverted Index)是一种数据结构,用于快速查找包含某个特定词或词语的文档。它主要用于全文搜索引擎等应用,允许用户根据关键词迅速定位相关文档。

倒排索引的基本思想是反转(倒排)文档-词语的映射关系。通常,在构建倒排索引时,会对文档集合中的每个文档进行分词,并记录每个词在哪些文档中出现。每个词都对应一个包含它的文档列表。这样,当需要搜索包含某个关键词的文档时,只需查找倒排索引中相应词的文档列表。

以下是构建倒排索引的基本步骤:

  1. 文档分词: 将每个文档进行分词,得到一组词语。

  2. 构建映射关系: 对每个词语,记录它在哪些文档中出现。

  3. 构建倒排索引: 对每个词语,建立一个索引,将其映射到包含它的文档列表。

倒排索引的优点包括:

  • 高效的检索: 对于大规模文本数据,使用倒排索引可以快速定位包含特定关键词的文档。

  • 省空间: 与直接存储文档之间的映射关系相比,倒排索引通常更省空间。

  • 支持复杂查询: 可以轻松支持多关键词的布尔查询和短语查询等。

倒排索引在全文搜索引擎中被广泛应用,例如在Google、Bing等搜索引擎中,它们利用倒排索引实现了快速而准确的搜索功能。

2.逻辑斯提回归算法

逻辑斯蒂回归(Logistic Regression)是一种用于二分类问题的机器学习算法,尽管名字中包含“回归”一词,但它实际上是一种分类算法而非回归算法。逻辑斯蒂回归可以用于解决概率估计问题,它输出一个在0和1之间的概率值,表示样本属于某一类的可能性。

逻辑斯蒂回归的基本原理如下:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  1. 假设函数: 假设函数采用逻辑斯蒂(sigmoid)函数,它的数学表达式为:

    [ h_\theta(x) = \frac{1}{1 + e{-\thetaT x}} ]

    其中,(h_\theta(x)) 是样本 (x) 属于正类的概率,(\theta) 是模型的参数向量。

  2. 损失函数: 逻辑斯蒂回归使用交叉熵损失函数(Cross-Entropy Loss)来衡量模型的性能,其数学表达式为:

    [ J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} \log(h_\theta(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_\theta(x^{(i)})) \right] ]

    其中,(m) 是样本数量,(y^{(i)}) 是样本 (x^{(i)}) 的实际类别标签。

  3. 参数优化: 通过最小化损失函数来优化模型的参数 (\theta)。这通常使用梯度下降等优化算法来实现。

逻辑斯蒂回归适用于线性可分的二分类问题,它对特征进行线性组合,并通过逻辑斯蒂函数将结果映射到0到1之间的概率。在实践中,逻辑斯蒂回归广泛应用于各种领域,如医学、金融和自然语言处理等。

需要注意的是,逻辑斯蒂回归虽然名字中包含“回归”,但其实质是一种分类算法,用于解决二分类问题。在处理多分类问题时,可以通过扩展为多类别逻辑斯蒂回归(Multinomial Logistic Regression)或使用其他多分类算法。

2.1 机器学习算法(一):逻辑回归模型(Logistic Regression, LR)

https://blog.csdn.net/weixin_39910711/article/details/81607386

(1) 分类平面是平面,曲面或者超平面分别是什么含义与作用

在机器学习中,分类平面、曲面和超平面是描述决策边界(decision boundary)的概念,这些边界用于将不同类别的样本分开。

  1. 分类平面: 一般指的是在二维空间中的平面,用于将两个类别的数据点分开。在这种情况下,决策边界就是一个平面。分类平面用于解决简单的二分类问题,其中数据可以被直线或平面分开。

  2. 曲面: 当决策边界不能通过平面表示,而需要通过曲面来分隔不同类别的样本时,我们可以使用曲面。曲面可以是在三维空间中的曲面,也可以是在更高维度空间中的曲面。曲面常常用于解决二分类或多分类问题。

  3. 超平面: 超平面是在高维空间中的一个平面。在机器学习中,支持向量机(Support Vector Machine,SVM)等算法常常使用超平面作为决策边界。对于二分类问题,超平面是一个 (n-1) 维的平面,其中 n 是特征的维度。超平面将特征空间分成两个部分,每一部分对应一个类别。

这些概念的作用是定义了模型的决策边界,即在特征空间中,模型如何将不同类别的样本分隔开。决策边界的形状取决于模型的类型和复杂性。线性模型(如逻辑斯蒂回归、线性支持向量机)可能产生线性的决策边界(平面或超平面),而非线性模型(如核支持向量机、决策树)可能产生曲面或更为复杂的决策边界,以更好地拟合数据。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(2)什么是交叉熵?什么是MSE?分别有什么优势和劣势。

交叉熵(Cross-Entropy)和均方误差(Mean Squared Error,MSE)是用于衡量模型预测值与真实值之间差异的两种损失函数。它们在不同的任务和模型中有各自的优势和劣势。

1. 交叉熵(Cross-Entropy):

交叉熵主要用于分类问题,特别是在神经网络中用作分类模型的损失函数。对于二分类问题,交叉熵损失函数的数学表达式如下:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

优势:

  • 适用于分类问题,尤其在深度学习中常用于训练分类模型。
  • 对于分类问题,交叉熵损失函数可以更好地反映模型对不同类别的置信度。

劣势:

  • 对于离散的标签,交叉熵更为适用,但在一些回归问题上不够合适。

2. 均方误差(Mean Squared Error,MSE):

均方误差主要用于回归问题,衡量模型预测值与真实值之间的平方差的平均值。均方误差的数学表达式为:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

其中,(y_i) 是真实标签,(\hat{y}_i) 是模型的预测值,(N) 是样本数量。

优势:

  • 适用于回归问题,对于输出是连续值的任务较为合适。
  • 对异常值不敏感,因为使用了平方。

劣势:

  • 在处理分类问题时,MSE 通常不如交叉熵效果好,因为它对于分类问题中的概率分布不够敏感。

在选择损失函数时,需要根据任务类型和模型特性进行合适的选择。在分类任务中,通常使用交叉熵损失函数;而在回归任务中,可以选择均方误差或其他适用的回归损失函数。

2.2 【机器学习】逻辑回归(非常详细)

https://zhuanlan.zhihu.com/p/74874291

2.3 加入正则化项的作用,以及加入正则化项的形式

正则化是在机器学习模型的训练过程中为损失函数添加额外项,以避免过拟合和提高模型的泛化能力。通过正则化,可以对模型参数的大小进行限制,防止其过于复杂,减小模型对训练数据的过度拟合。

在损失函数中添加正则化项的一般形式为:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

其中,(J(\theta)) 是包含正则化项的新损失函数,(\lambda) 是正则化强度的超参数,(\theta) 是模型的参数。

常用的正则化项包括 L1 正则化和 L2 正则化:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

L2 正则化通过对权重的平方进行惩罚,倾向于让权重尽可能小,但不会让它们变为零。它有助于缓解特征间的共线性问题。

在机器学习中,正则化的作用有以下几点:

  1. 防止过拟合: 正则化通过限制模型的复杂度,防止模型在训练数据上过度拟合,提高对新数据的泛化能力。

  2. 特征选择: L1 正则化的特点是可以使一些特征的权重为零,从而实现特征选择,减少不重要的特征对模型的影响。

  3. 缓解共线性: L2 正则化有助于缓解特征之间的共线性问题,使模型对输入特征变化更为稳健。

在实际应用中,超参数 (\lambda) 的选择通常通过交叉验证等方法来确定。正则化在许多机器学习算法中都得到了广泛的应用,例如线性回归、逻辑斯蒂回归、支持向量机等。

2.4 为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的),以及为什么L2正则化可以防止过拟合。

L1 正则化产生稀疏模型的原因:

L1 正则化通过在损失函数中添加 ( \lambda \sum_{i=1}^{n} |w_i| ) 项,其中 (w_i) 是模型的权重,(n) 是权重的数量。这个额外的惩罚项具有一种特殊的性质,它促使模型学习到的权重中的一些值变为零。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

具体来说,L1 正则化在优化过程中,倾向于将某些特征对应的权重直接设为零。这是因为 L1 正则化的梯度在某个特征的权重等于零时不可导,而在其他地方都是可导的。因此,为了最小化损失函数,模型倾向于让一些特征的权重直接变为零,从而实现稀疏性。

对于具有大量特征的问题,L1 正则化能够帮助识别并保留对目标变量预测有贡献的关键特征,而将其他特征的权重设为零。这种特性在特征选择和解释模型中很有用。

L2 正则化防止过拟合的原因:

L2 正则化通过在损失函数中添加 ( \lambda \sum_{i=1}^{n} w_i^2 ) 项,其中 (w_i) 是模型的权重,(n) 是权重的数量。相比于 L1 正则化,L2 正则化的梯度在任何地方都是可导的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

L2 正则化的效果主要表现在对权重的平方进行惩罚。这导致模型在训练过程中倾向于将权重保持较小的值,避免过度拟合训练数据。

防止过拟合的原因在于,L2 正则化通过限制权重的大小,减缓了模型对训练数据中噪声的过度拟合。较小的权重值使得模型对输入特征的小变化不敏感,从而提高了模型对新数据的泛化能力。

综合来看,L1 正则化通过产生稀疏模型,有助于特征选择和模型解释;而 L2 正则化通过控制权重的大小,有助于防止模型过拟合。在实际应用中,可以根据问题的特性选择使用 L1 正则化、L2 正则化,或者它们的组合(弹性网络 Elastic Net)。

2.5 softmax函数

Softmax 函数是一种常用的激活函数,特别适用于多分类问题。它将一个包含任意实数的 K 维向量,映射为一个 K 维的概率分布,其中每个元素的取值范围在 (0, 1) 之间,并且所有元素的和为 1。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Softmax 函数的性质使得它在多分类问题中特别有用,因为它可以将模型的原始输出转换为类别概率。在深度学习中,通常将 Softmax 函数作为神经网络输出层的激活函数,以便将神经网络的原始输出转换为类别概率。

Softmax 函数的特点包括:

  1. 归一性: Softmax 函数的输出是一个概率分布,因此所有元素的和等于 1,这使得它可以表示一个完整的类别分布。

  2. 连续性: Softmax 函数是光滑的,可导数的,这在梯度下降等优化算法中很有用。

  3. 转换作用: Softmax 函数对原始分数进行了指数变换,使得大的分数更大,小的分数更小,这有助于突显模型在输入上的置信度。

Softmax 函数在交叉熵损失(Cross-Entropy Loss)等多分类问题中的配合使用,使得模型能够输出概率分布,并且在训练过程中通过最小化损失函数来调整模型参数,以便更好地匹配真实的类别分布。

5 为什么逻辑斯蒂回归的输出值可以作为概率

逻辑斯蒂回归(Logistic Regression)的输出值可以被解释为样本属于某一类别的概率,这是因为逻辑斯蒂回归使用了逻辑斯蒂函数(sigmoid函数)作为激活函数。

逻辑斯蒂函数的数学表达式为:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

逻辑斯蒂函数具有以下性质:

  1. 输出范围:逻辑斯蒂函数的输出范围在 (0, 1) 之间,即对于任何实数输入,输出都在 0 到 1 之间。

  2. 单调性:逻辑斯蒂函数是单调递增的,即当 (z_1 < z_2) 时,(\sigma(z_1) < \sigma(z_2))。

  3. 饱和性:逻辑斯蒂函数在两端接近 0 或 1,但不会完全到达,因此避免了输出值严格等于 0 或 1。

由于逻辑斯蒂函数的输出在 (0, 1) 之间,并且趋向于0或1,可以将其解释为某个样本属于正类别的概率。在二分类问题中,通常设定一个阈值(例如0.5),当逻辑斯蒂函数的输出大于阈值时,将样本划分为正类别,否则划分为负类别。

这种概率的解释使得逻辑斯蒂回归在分类问题中非常有用,尤其是在需要估计概率而不仅仅是类别标签的情况下。逻辑斯蒂回归的训练过程通过最小化对数损失函数,使得模型输出的概率尽量接近真实标签的概率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/267205.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

c#委托学习笔记1

委托三步骤 第一步&#xff1a;定义委托 //第一步&#xff1a;1 声明委托(定义委托) //对于声明委托的解释如下&#xff1a; //解释a&#xff1a;函数指针 //解释b&#xff1a;委托就是定义函数的形状&#xff08;形态&#xff09; // 即&#xff1a;返回值类型&#x…

代码随想录刷题题Day21

刷题的第二十一天&#xff0c;希望自己能够不断坚持下去&#xff0c;迎来蜕变。&#x1f600;&#x1f600;&#x1f600; 刷题语言&#xff1a;C Day21 任务 ● 216.组合总和III ● 17.电话号码的字母组合 1 组合总和III 216.组合总和III 思路&#xff1a; 在[1,2,3,4,5,6,…

数据孤岛:一场数据的独立战争

在当今数字化的时代&#xff0c;数据已成为企业和组织最宝贵的资产之一。然而&#xff0c;尽管数据的价值被广泛认可&#xff0c;但数据的分散和孤立问题却仍然存在&#xff0c;这就是所谓的数据孤岛。本文将重点分析什么是数据孤岛、数据孤岛的危害以及解决数据孤岛的传统和创…

C语言课程设计_运动会管理系统

本次课程设计利用《C语言程序设计》课程中所学到的编程知识和编程技巧&#xff0c;完成具有一定难度和工作量的程序设计题目&#xff0c;帮助学生掌握编程、调试的基本技能&#xff0c;独立完成所布置的任务。 要求 1、对系统进行功能需求分析 2、设计合理的数据结构和系统框…

分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention基于马尔可夫转移场-卷积神经网络融合多头注意力多特征数据分类预测

分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention基于马尔可夫转移场-卷积神经网络融合多头注意力多特征数据分类预测 目录 分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention基于马尔可夫转移场-卷积神经网络融合多头注意力多特征数据分类预测分类效果基本描述程序设计参考…

HarmonyOS4.0系统性深入开发03UIAbility组件详解(中)

UIAbility组件基本用法 UIAbility组件的基本用法包括&#xff1a;指定UIAbility的启动页面以及获取UIAbility的上下文UIAbilityContext。 指定UIAbility的启动页面 应用中的UIAbility在启动过程中&#xff0c;需要指定启动页面&#xff0c;否则应用启动后会因为没有默认加载…

2024华为OD机试真题指南宝典—持续更新(JAVAPythonC++JS)【彻底搞懂算法和数据结构—算法之翼】

PC端可直接搜索关键词 快捷键&#xff1a;CtrlF 年份关键字、题目关键字等等 注意看本文目录-快速了解本专栏 文章目录 &#x1f431;2024年华为OD机试真题&#xff08;马上更新&#xff09;&#x1f439;2023年华为OD机试真题&#xff08;更新中&#xff09;&#x1f436;新…

Python字符串处理全攻略(三):常用内置方法轻松掌握

目录 引言Python字符串常用内置方法str.index()功能介绍语法注意事项总结 str.startswith()功能介绍语法示例注意事项 str.expandtabs()功能介绍语法示例注意事项总结 str.splitlines()功能介绍语法示例注意事项总结 str.swapcase()功能介绍语法示例注意事项 结束语 引言 欢迎…

XUbuntu22.04之跨平台容器格式工具:MKVToolNix(二百零三)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

【Hadoop】Zookeeper是什么?怎么理解它的工作机制?

Zookeeper是什么Zookeeper工作机制 Zookeeper是什么 Zookeeper是一个开源的分布式的&#xff0c;为别的分布式矿建提供协调服务的Apache项目。分布式简单地理解就是多台机器共同完成一个任务。 Zookeeper工作机制 从设计模式的角度来理解&#xff0c;是一个基于观察者模式设…

css学习笔记6(盒子模型)

CSS盒子模型 五、CSS盒子模型1.CSS长度单位2.元素的显示模式3.总结各元素的显示模式4.修改元素显示模式5.盒子模型的组成6.盒子内容区&#xff08;content&#xff09;7.关于默认宽度8.盒子内边距&#xff08;padding&#xff09;9.盒子边框&#xff08;border&#xff09;10.盒…

深度学习入门(python)考试速成均方误差

均方误差 表示神经网络的输出&#xff0c;表示监督数据&#xff0c;表示数据的维度。 这里神经网络的输出y是softmax函数的输出 数组元素的索引从第一个开始依次对应数组“0”&#xff0c;“1”&#xff0c;“2”&#xff0c;...... 由于softmax函数的输出可理解为概率 由此…

指针的含义

我们还取前面图片解释的道理&#xff1a; pa表示的意思就是这个地址&#xff0c;并不会显示出10这个数字 *pa就是指针&#xff0c;最后指向了a10&#xff0c;所以他最后程序输出是10 &pa这个含义就是取pa的地址&#xff0c;那么pa是一个虚拟的地址&#xff0c;只是简单的…

概率中的50个具有挑战性的问题[02/50]:连续获胜

一、说明 我最近对与概率有关的问题产生了兴趣。我偶然读到了弗雷德里克莫斯特勒&#xff08;Frederick Mosteller&#xff09;的《概率论中的五十个具有挑战性的问题与解决方案》&#xff08;Fifty Challenge Problems in Probability with Solutions&#xff09;一书。我认为…

python实现图像的几何变换——冈萨雷斯数字图像处理

1、 实现图像的平移。 原理: 图像的平移是一种基本的图像处理操作&#xff0c;它将图像中的每个像素沿着指定的方向和距离移动&#xff0c;以创建一个新的平移后的图像。平移的原理很简单&#xff0c;通常涉及到以下几个步骤&#xff1a; 确定平移的距离和方向&#xff1a;首先…

2024苹果手机iOS管理软软件iMazing2.17永久免费版下载教程

iMazing2024是一款专业的苹果IOS设备管理器&#xff0c;强悍的性能远超苹果的iTunes&#xff0c;iMazing 能让广大果粉能已自己的方式管理苹果设备&#xff0c;无需iTunes即可畅快传输或者保存苹果设备中的音乐、消息、文件以及其他数据。 iMazing2Mac-最新绿色安装包下载如下&…

下一站,上岸@24考研er

时间过的好快&#xff0c; 考研倒计时①天 去年这个时候&#xff0c; 我应该也是充满未知地进入即将来到的考研初试 去年&#xff0c;这个时候&#xff0c;疫情&#x1f637;刚刚放开 许多人都&#x1f411;&#xff0c;发烧&#xff0c;可幸的是我受影响不大 &#x1f3…

供应链 | 顶刊MSOM论文精选——关税对全球供应链网络配置的影响:模型、预测和未来研究

编者按 关税对企业全球供应链网络设计决策的影响 本文为 M&SOM期刊20周年特邀论文&#xff0c;原文信息&#xff1a; Lingxiu Dong, Panos Kouvelis (2020) Impact of Tariffs on Global Supply Chain Network Configuration: Models, Predictions, and Future Research…

MySQL 数据库系列课程 05:MySQL命令行工具的配置

一、Windows启动命令行工具 &#xff08;1&#xff09;打开 Windows 的开始菜单&#xff0c;找到安装好的 MySQL&#xff0c;点击MySQL 8.0 Command Line Client - Unicode&#xff0c;这个带有 Unicode 的&#xff0c;是支持中文的&#xff0c;允许在命令行中敲中文。 &…

Java经典面试题——手写快速排序和归并排序

题目链接&#xff1a;https://www.luogu.com.cn/problem/P1177 输入模板&#xff1a; 5 4 2 4 5 1快速排序 技巧&#xff1a;交换数组中的两个位置 a[l] a[l] a[r] - (a[r] a[l]); 稳定不稳定&#xff1f;:不稳定 注意找哨兵那里内循环的等于号不能漏&#xff0c;不然…