MATLAB ga函数的使用方法

一、ga句法结构

x = ga(fitnessfcn,nvars)
x = ga(fitnessfcn,nvars,A,b)
x = ga(fitnessfcn,nvars,A,b,Aeq,beq)
x = ga(fitnessfcn,nvars,A,b,Aeq,beg,IB,UB)
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon)
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)
x = ga(fitnessfcn,nvars,A,b,[],[],LB,UB,nonlcon,IntCon)
x = ga(fitnessfcn,nvars,A,b,[],[],LB,UB,nonlcon,IntCon,options)
x = ga(problem)
[x,fval] = ga(fitnessfcn,nvars,...)
[x,fval,exitflag] = ga (fitnessfcn,nvars,...)
[x,fval,exitflag,output] = ga(fitnessfcn,nvars,...)
[x,fval,exitflag,output,population] = gafitnessfcn,nvars,...)
[x,fval,exitflag,output,population,scores] = ga(fitnessfcn,nvars,...)

二、释义及解读

  • fitnessfcn 为适应度句柄函数(即:目标函数);
  • nvars 为目标函数自变量的个数;
  • options 为算法的属性设置,该属性是通过函数gaoptimset赋予的;
  • x 为经过遗传进化以后自变量最佳染色体返回值;
  • fval 为最佳染色体的适应度;
  • exitflag 为算法停止的原因;
  • output 为输出的算法结构;

  • population 为最终得到种群适应度的列向量(即当前群体,而群体里性能最好的个体,便是最优值点);

  • scores 为最终得到的种群(即:最优值点的目标函数取值);

  • A A A b b b:线性不等式约束 A ∗ x ≤ b A*x\leq b Axb 中的矩阵;
    (Note: If the problem has m linear inequality constraints and nvars variables. then A is a matrix of size m-by-nvars and b is a vector of length m. ga evaluates the matrix product A*x as if x is transposed (Ax’). )

  • A e q Aeq Aeq b e q beq beq:线性等式约束 A e q ∗ x = b e q Aeq*x=beq Aeqx=beq 中的矩阵;
    (Note: ga does not enforce linear constraints to be satisfied when the PopulationType option is ‘bitstring’ or ‘custom’.)

  • nonlcon:非线性约束,该函数返回两个输出,即:[g,h] = nonlcon(x) ,g为非线性不等式约束,所有的不等式约束均以列向量的形式存在变量g中。h为非线性等式约束,也以列向量的形式存储。非线性约束中[g,h]使用规则与我另一篇博客MATLAB fmincon函数 进阶资料(磕盐记录)一样,这里不展开叙述了。 需要注意:ga atempts to achieve g = 0 g = 0 g=0 and h = 0 h= 0 h=0. g g g and h are row vectors when there are multiple constraints. Set unused outputs to g = [ ] or h = [ ].

  • IntCon:若变量 x 中存在整数变量,则在这里设置!具体地,IntCon 是由正数整数组成的向量,取值从 1 到 nvars,IntCon 中的每个值代表决策变量 x 中相应位置的索引变量是整数变量。
    (Note: When IntCon is nonempty, Aeq and beq must be empty ([ ]), and nonlcon must return empty for ceq. For more information on integer programming, see Mixed Integer Optimizaton.)

  • options:Create options using gaoptimset. 下一章节将详细介绍 options 中关于 gaoptimset 的设置规则。


三、gaoptimset 介绍

gaoptimset 常用来设置 options 中的各个选项,其句式结构如下:

options = gaoptimset('param1',value1,'param2',value2,...)

其中, ‘Param1’、 ‘Param2’等是需要设定的参数,比如:种群规模(PopulationSize)、交叉比例(CrossoverFraction)等,value1、value2等则是Param的具体值,常用的参数名如下表:

设定的参数名(Param名)说明默认值
CrossoverFraction交叉比例0.8
Generations算法中止的最大迭代次数100
PopulationSize种群规模20
MigrationFraction变异概率0.2
FitnessLimit当适应度函数达到设定的值时算法中止-
StallGenLimit当超过StallGenLimit代适应度函数为改善时,算法中止50

更多参数设定详见 MATLAB 官方文档,可在MATLAB命令窗口中输入 “doc gaoptimset” 查看:

四、实例运行

实例原始网址: MATLAB利用遗传算法函数求目标函数的最优解

  1. 目标函数如下:
function f = myfit( x )
    f = (339-0.01*x(1)-0.003*x(2))*x(1)...
        + (399-0.004*x(1)-0.01*x(2))*x(2)...
        - (400000+195*x(1)+225*x(2));
    f = -f; %因为GA是寻找最小值,所以为了求这个函数的最大值,取f的相反数
end 
  1. 主函数如下:
options = gaoptimset();
options.Generations = 2000; %最大迭代数设为2000
  
%再次调用GA函数
[X,FVAL,EXITFLAG,OUTPUT] =ga(@myfit, 2 ,[], [],[],[],[],[],[],[],options)

运行结果为:

EXITFLAG 返回值为1,说明所求结果无特殊情况。

需要注意的是:如果 options.Generations 不设为 2000,采用默认迭代100轮来运行上述代码,则运行结果如下图所示:

注意到此时,EXITFLAG 返回值为0,显示信息为:Optimization terminated: maximum number of generations exceeded.

即:达到最大迭代轮数,此时的结果与最优理想结果相差甚远。由此例可知,关于最大迭代次数的设定,一定要小心,务必满足迭代次数的要求!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/264566.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

conda环境下更改虚拟环境安装路径

1 引言 在Anaconda中如果没有指定路径,虚拟环境会默认安装在anaconda所安装的目录下,但如果默认环境的磁盘空间不足,无法满足大量安装虚拟环境的需求,此时我们需要更改虚拟环境的安装路径,有以下两种方案: 方案1: 每次…

【AivaAI】做音乐,无人能比它更专业

关于Aiva Aiva AIVA是音乐制作初创公司AIVA Technologies打造的一款人工智能产品。是人工智能领域头款获得国际认证的虚拟作曲家。 Aiva登录 可以选择Google登录,或者其他邮箱登录。 输入用户名,登录完成。 开始制作音乐 在主页选择“创建曲目…

uniapp使用colorUI

colorUI 微动画 | ColorUI 使用文档 1&#xff1a;把colorui里三个文件复制到自己项目中去 App.vue </script> <style> import url(colorui/icon.css); import url(colorui/main.css); import url("colorui/animation.css");-webkit-keyframes show {…

HackTheBox - Medium - Linux - Jupiter

Jupiter Jupiter 是一台中等难度的 Linux 机器&#xff0c;它有一个使用 PostgreSQL 数据库的 Grafana 实例&#xff0c;该数据库在权限上过度扩展&#xff0c;容易受到 SQL 注入的影响&#xff0c;因此容易受到远程代码执行的影响。一旦站稳脚跟&#xff0c;就会注意到一个名…

OPC UA 与PROFINET比较

ROFINET和OPC UA是两种常见的协议&#xff0c;过去这两个协议有两个不同的角色。PROFINET通常用于现场设备和本地控制器之间的实时数据通信。而OPC UA通常用于在本地控制器和更高级别的MES和SCADA系统之间进行通信。 OPC UA 网络架构 PROFINET网络由IO控制器和IO设备组成&…

人工智能_机器学习070_SVM支持向量机_软间隔及优化_硬间隔_衡量间隔软度_引入松弛变量_理解隔离参数---人工智能工作笔记0110

我们继续说,之前说的C是什么意思? 我们在这个软间隔优化中就可以引出C 可以看到之前我们讨论的问题,都是基于样本点的,完全的线性可分的问题,我们称为硬间隔 可以看到这种,一分就可以,分开,简单分割就可以分开的数据,我们称之为硬间隔 但是可以看到上面这种情况,无论怎么分,都…

关于游戏性能优化的技巧

关于游戏性能优化的技巧 游戏性能优化对象池Jobs、Burst、多线程间隔处理定时更新全局广播缓存组件缓存常用数据2D残影优化2D骨骼转GPU动画定时器优化DrawCall合批处理优化碰撞层优化粒子特效 游戏性能优化 好久没有在CSDN上面写文章了&#xff0c;今天突然看到鬼谷工作室技术…

2.3_2 进程互斥的软件实现方法

2.3_2 进程互斥的软件实现方法 #mermaid-svg-MEJSSglXzFe6Q501 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-MEJSSglXzFe6Q501 .error-icon{fill:#552222;}#mermaid-svg-MEJSSglXzFe6Q501 .error-text{fill:#5522…

【微服务】:微服务最佳实践

关键需求 最大限度地提高团队的自主性&#xff1a;创建一个团队可以完成更多工作而不必与其他团队协调的环境。优化开发速度&#xff1a;硬件便宜&#xff0c;人不是。使团队能够轻松快捷地构建强大的服务。关注自动化&#xff1a;人们犯错误。更多的系统操作也意味着更多的事情…

Python多任务编程-09队列Queue

程序中的定义&#xff1a;一种特殊的存储数据的方式&#xff0c;可以实现先存入的数据&#xff0c;先出去 1.程序中的队列Queue FIFO&#xff08;first in first out先进先出&#xff09; import queueq queue.Queue() q.put("22") q.put(500) q.put({"num&q…

nodejs微信小程序+python+PHP医院挂号系统-计算机毕业设计推荐

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

C练习题13答案

单项选择题(本大题共20小题,每小题2分,共40分。在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前的字母填写在答题纸的相应位置上。) 1.结构化程序由三种基本结构组成、三种基本结构组成的算法是(A) A.可以完成任何复杂的任务 B. 只能完成部分复杂的任务 C. 只能完…

MySQL运维实战(1.2)安装部署:使用二进制安装部署

作者&#xff1a;俊达 引言 上一篇我们使用了RPM进行安装部署&#xff0c;这是一种安装快速、简化部署和管理过程、与操作系统提供的包管理工具紧密集成的部署方法。此外&#xff0c;当你需要更高的灵活性和自定义性&#xff0c;并且愿意承担一些额外的手动配置和管理工作&am…

JavaScript高级 函数进阶篇

函数进阶 1、函数的定义和调用 函数声明方式function关键字&#xff08;命名函数&#xff09;&#xff1b;函数表达式&#xff08;匿名函数&#xff09;&#xff1b;new Function()&#xff08;此处的Function()是一个构造函数&#xff09;&#xff1b;var fn new Function(参…

IntelliJ IDEA 2020将SpringMVC项目打成war包

一 、打开 Project Structure 进行配置 1. 打开方式 &#xff08;1&#xff09;CtrlAltShiftS &#xff08;2&#xff09;File->Project Structure &#xff08;3&#xff09;点击如下图标&#xff1a; 2. 进入 Project Structure&#xff0c;添加Artifacts Web Applica…

YB75XXH系列是采用CMOS工艺制造,低功耗的高压稳压器

YB75xxH 高耐压线性稳压器 ■产品简介&#xff1a; YB75XXH系列是采用CMOS工艺制造&#xff0c;低功耗的高压稳压器&#xff0c;最高输入电压可达25V,输出电压范围为1.5V一12.0V。它具有高精度的输出电压、极低的供电电流、极低的跌落电压等特点。 ■产品特点&#xff1a; …

Python并行计算和分布式任务全面指南

更多Python学习内容&#xff1a;ipengtao.com 大家好&#xff0c;我是彭涛&#xff0c;今天为大家分享 Python并行计算和分布式任务全面指南。全文2900字&#xff0c;阅读大约8分钟 并发编程是现代软件开发中不可或缺的一部分&#xff0c;它允许程序同时执行多个任务&#xff0…

spring基于Xml管理bean---Ioc依赖注入:对象类型属性赋值(1)----外部bean的引入(bean和bean之间的引入)

文章目录 注入普通属性的方式1、set方法注入2、构造器&#xff08;构造方法&#xff09;注入 总结&#xff1a;注入对象类型属性 注入普通属性的方式 1、set方法注入 2、构造器&#xff08;构造方法&#xff09;注入 总结&#xff1a; set方法注入和构造器方法的注入&#…

基于Netty构建Websocket服务端

除了构建TCP和UDP服务器和客户端&#xff0c;Netty还可以用于构建WebSocket服务器。WebSocket是一种基于TCP协议的双向通信协议&#xff0c;可以在Web浏览器和Web服务器之间建立实时通信通道。下面是一个简单的示例&#xff0c;演示如何使用Netty构建一个WebSocket服务器。 项目…

构建数字化金融生态系统:云原生的创新方法

内容来自演讲&#xff1a;曾祥龙 | DaoCloud | 解决方案架构师 摘要 本文探讨了金融企业在实施云原生体系时面临的挑战&#xff0c;包括复杂性、安全、数据持久化、服务网格使用和高可用容灾架构等。针对网络管理复杂性&#xff0c;文章提出了Spiderpool开源项目&#xff0c;…