参考这里:
https://huggingface.co/docs/huggingface_hub/guides/download
可见下载单个文件,下载整个仓库文件都是可行的。
这是使用snapshot_download下载的一个例子:
https://qq742971636.blog.csdn.net/article/details/135150482
snapshot_download 会利用 hf_hub_download 函数实现下载所有文件,hf_hub_download是负责下载单个文件的。
snapshot_download 函数有点sb的一点是,你的本地目录已经存在了某个文件,你运行snapshot_download之后就重复下载。一看介绍:如果local_dir_use_symlinks=False并且blob文件不在缓存目录中,那么文件会被下载并直接放在local_dir下。这意味着如果您稍后需要重新下载它们,它们将被完全重新下载。
If `local_dir` is provided, the file structure from the repo will be replicated in this location. You can configure
how you want to move those files:
- If `local_dir_use_symlinks="auto"` (default), files are downloaded and stored in the cache directory as blob
files. Small files (<5MB) are duplicated in `local_dir` while a symlink is created for bigger files. The goal
is to be able to manually edit and save small files without corrupting the cache while saving disk space for
binary files. The 5MB threshold can be configured with the `HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD`
environment variable.
- If `local_dir_use_symlinks=True`, files are downloaded, stored in the cache directory and symlinked in `local_dir`.
This is optimal in term of disk usage but files must not be manually edited.
- If `local_dir_use_symlinks=False` and the blob files exist in the cache directory, they are duplicated in the
local dir. This means disk usage is not optimized.
- Finally, if `local_dir_use_symlinks=False` and the blob files do not exist in the cache directory, then the
files are downloaded and directly placed under `local_dir`. This means if you need to download them again later,
they will be re-downloaded entirely.
什么乱七八糟的,必须将filtered_repo_files文件里剔除掉已经存在的,不然每次都重复下就不用玩了,选择直接改源码。
修改文件/opt/xiedong/miniconda3/envs/datacomp/lib/python3.10/site-packages/huggingface_hub/_snapshot_download.py
import os
from pathlib import Path
from typing import Dict, List, Literal, Optional, Union
from tqdm.auto import tqdm as base_tqdm
from tqdm.contrib.concurrent import thread_map
from .constants import (
DEFAULT_ETAG_TIMEOUT,
DEFAULT_REVISION,
HF_HUB_CACHE,
HF_HUB_ENABLE_HF_TRANSFER,
REPO_TYPES,
)
from .file_download import REGEX_COMMIT_HASH, hf_hub_download, repo_folder_name
from .hf_api import HfApi
from .utils import filter_repo_objects, logging, validate_hf_hub_args
from .utils import tqdm as hf_tqdm
logger = logging.get_logger(__name__)
@validate_hf_hub_args
def snapshot_download(
repo_id: str,
*,
repo_type: Optional[str] = None,
revision: Optional[str] = None,
cache_dir: Union[str, Path, None] = None,
local_dir: Union[str, Path, None] = None,
local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto",
library_name: Optional[str] = None,
library_version: Optional[str] = None,
user_agent: Optional[Union[Dict, str]] = None,
proxies: Optional[Dict] = None,
etag_timeout: float = DEFAULT_ETAG_TIMEOUT,
resume_download: bool = False,
force_download: bool = False,
token: Optional[Union[bool, str]] = None,
local_files_only: bool = False,
allow_patterns: Optional[Union[List[str], str]] = None,
ignore_patterns: Optional[Union[List[str], str]] = None,
max_workers: int = 8,
tqdm_class: Optional[base_tqdm] = None,
endpoint: Optional[str] = None,
) -> str:
"""Download repo files.
Download a whole snapshot of a repo's files at the specified revision. This is useful when you want all files from
a repo, because you don't know which ones you will need a priori. All files are nested inside a folder in order
to keep their actual filename relative to that folder. You can also filter which files to download using
`allow_patterns` and `ignore_patterns`.
If `local_dir` is provided, the file structure from the repo will be replicated in this location. You can configure
how you want to move those files:
- If `local_dir_use_symlinks="auto"` (default), files are downloaded and stored in the cache directory as blob
files. Small files (<5MB) are duplicated in `local_dir` while a symlink is created for bigger files. The goal
is to be able to manually edit and save small files without corrupting the cache while saving disk space for
binary files. The 5MB threshold can be configured with the `HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD`
environment variable.
- If `local_dir_use_symlinks=True`, files are downloaded, stored in the cache directory and symlinked in `local_dir`.
This is optimal in term of disk usage but files must not be manually edited.
- If `local_dir_use_symlinks=False` and the blob files exist in the cache directory, they are duplicated in the
local dir. This means disk usage is not optimized.
- Finally, if `local_dir_use_symlinks=False` and the blob files do not exist in the cache directory, then the
files are downloaded and directly placed under `local_dir`. This means if you need to download them again later,
they will be re-downloaded entirely.
An alternative would be to clone the repo but this requires git and git-lfs to be installed and properly
configured. It is also not possible to filter which files to download when cloning a repository using git.
Args:
repo_id (`str`):
A user or an organization name and a repo name separated by a `/`.
repo_type (`str`, *optional*):
Set to `"dataset"` or `"space"` if downloading from a dataset or space,
`None` or `"model"` if downloading from a model. Default is `None`.
revision (`str`, *optional*):
An optional Git revision id which can be a branch name, a tag, or a
commit hash.
cache_dir (`str`, `Path`, *optional*):
Path to the folder where cached files are stored.
local_dir (`str` or `Path`, *optional*):
If provided, the downloaded files will be placed under this directory, either as symlinks (default) or
regular files (see description for more details).
local_dir_use_symlinks (`"auto"` or `bool`, defaults to `"auto"`):
To be used with `local_dir`. If set to "auto", the cache directory will be used and the file will be either
duplicated or symlinked to the local directory depending on its size. It set to `True`, a symlink will be
created, no matter the file size. If set to `False`, the file will either be duplicated from cache (if
already exists) or downloaded from the Hub and not cached. See description for more details.
library_name (`str`, *optional*):
The name of the library to which the object corresponds.
library_version (`str`, *optional*):
The version of the library.
user_agent (`str`, `dict`, *optional*):
The user-agent info in the form of a dictionary or a string.
proxies (`dict`, *optional*):
Dictionary mapping protocol to the URL of the proxy passed to
`requests.request`.
etag_timeout (`float`, *optional*, defaults to `10`):
When fetching ETag, how many seconds to wait for the server to send
data before giving up which is passed to `requests.request`.
resume_download (`bool`, *optional*, defaults to `False):
If `True`, resume a previously interrupted download.
force_download (`bool`, *optional*, defaults to `False`):
Whether the file should be downloaded even if it already exists in the local cache.
token (`str`, `bool`, *optional*):
A token to be used for the download.
- If `True`, the token is read from the HuggingFace config
folder.
- If a string, it's used as the authentication token.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, avoid downloading the file and return the path to the
local cached file if it exists.
allow_patterns (`List[str]` or `str`, *optional*):
If provided, only files matching at least one pattern are downloaded.
ignore_patterns (`List[str]` or `str`, *optional*):
If provided, files matching any of the patterns are not downloaded.
max_workers (`int`, *optional*):
Number of concurrent threads to download files (1 thread = 1 file download).
Defaults to 8.
tqdm_class (`tqdm`, *optional*):
If provided, overwrites the default behavior for the progress bar. Passed
argument must inherit from `tqdm.auto.tqdm` or at least mimic its behavior.
Note that the `tqdm_class` is not passed to each individual download.
Defaults to the custom HF progress bar that can be disabled by setting
`HF_HUB_DISABLE_PROGRESS_BARS` environment variable.
Returns:
Local folder path (string) of repo snapshot
<Tip>
Raises the following errors:
- [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError)
if `token=True` and the token cannot be found.
- [`OSError`](https://docs.python.org/3/library/exceptions.html#OSError) if
ETag cannot be determined.
- [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError)
if some parameter value is invalid
</Tip>
"""
if cache_dir is None:
cache_dir = HF_HUB_CACHE
if revision is None:
revision = DEFAULT_REVISION
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
if repo_type is None:
repo_type = "model"
if repo_type not in REPO_TYPES:
raise ValueError(f"Invalid repo type: {repo_type}. Accepted repo types are: {str(REPO_TYPES)}")
storage_folder = os.path.join(cache_dir, repo_folder_name(repo_id=repo_id, repo_type=repo_type))
print(f"storage_folder: {storage_folder}")
# if we have no internet connection we will look for an
# appropriate folder in the cache
# If the specified revision is a commit hash, look inside "snapshots".
# If the specified revision is a branch or tag, look inside "refs".
if local_files_only:
if REGEX_COMMIT_HASH.match(revision):
commit_hash = revision
else:
# retrieve commit_hash from file
ref_path = os.path.join(storage_folder, "refs", revision)
with open(ref_path) as f:
commit_hash = f.read()
snapshot_folder = os.path.join(storage_folder, "snapshots", commit_hash)
if os.path.exists(snapshot_folder):
return snapshot_folder
raise ValueError(
"Cannot find an appropriate cached snapshot folder for the specified"
" revision on the local disk and outgoing traffic has been disabled. To"
" enable repo look-ups and downloads online, set 'local_files_only' to"
" False."
)
print(f"revision: {revision}")
# if we have internet connection we retrieve the correct folder name from the huggingface api
api = HfApi(library_name=library_name, library_version=library_version, user_agent=user_agent, endpoint=endpoint)
repo_info = api.repo_info(repo_id=repo_id, repo_type=repo_type, revision=revision, token=token)
assert repo_info.sha is not None, "Repo info returned from server must have a revision sha."
assert repo_info.siblings is not None, "Repo info returned from server must have a siblings list."
filtered_repo_files = list(
filter_repo_objects(
items=[f.rfilename for f in repo_info.siblings],
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
)
)
# print(f"filtered_repo_files: {filtered_repo_files}")
commit_hash = repo_info.sha
print(f"commit_hash: {commit_hash}")
snapshot_folder = os.path.join(storage_folder, "snapshots", commit_hash)
print(f"snapshot_folder: {snapshot_folder}")
# if passed revision is not identical to commit_hash
# then revision has to be a branch name or tag name.
# In that case store a ref.
if revision != commit_hash:
ref_path = os.path.join(storage_folder, "refs", revision)
os.makedirs(os.path.dirname(ref_path), exist_ok=True)
with open(ref_path, "w") as f:
f.write(commit_hash)
print(f"ref_path: {ref_path}")
# we pass the commit_hash to hf_hub_download
# so no network call happens if we already
# have the file locally.
def _inner_hf_hub_download(repo_file: str):
return hf_hub_download(
repo_id,
filename=repo_file,
repo_type=repo_type,
revision=commit_hash,
endpoint=endpoint,
cache_dir=cache_dir,
local_dir=local_dir,
local_dir_use_symlinks=local_dir_use_symlinks,
library_name=library_name,
library_version=library_version,
user_agent=user_agent,
proxies=proxies,
etag_timeout=etag_timeout,
resume_download=resume_download,
force_download=force_download,
token=token,
)
# 处理filtered_repo_files,删除在local_dir中存在的文件
files_exist_in_local_dir = os.listdir(local_dir)
# print(f"files_exist_in_local_dir: {files_exist_in_local_dir}")
filtered_repo_files = [file for file in filtered_repo_files if file not in files_exist_in_local_dir]
print("sorted filtered_repo_files")
filtered_repo_files.sort()
print(f"len(filtered_repo_files): {len(filtered_repo_files)}")
if len(filtered_repo_files) == 0:
raise ValueError(
"No files to download. Please check that the allow_patterns and ignore_patterns"
" parameters are correct."
)
if HF_HUB_ENABLE_HF_TRANSFER:
print("单线程下载")
# print(f"filtered_repo_files: {filtered_repo_files}")
# when using hf_transfer we don't want extra parallelism
# from the one hf_transfer provides
for file in filtered_repo_files:
_inner_hf_hub_download(file)
else:
print("多线程下载")
print(f"max_workers: {max_workers}")
# print(f"filtered_repo_files: {filtered_repo_files}")
thread_map(
_inner_hf_hub_download,
filtered_repo_files,
desc=f"Fetching {len(filtered_repo_files)} files",
max_workers=max_workers,
# User can use its own tqdm class or the default one from `huggingface_hub.utils`
tqdm_class=tqdm_class or hf_tqdm,
)
if local_dir is not None:
return str(os.path.realpath(local_dir))
return snapshot_folder
这样略过那些已经下载了的文件,就舒服多了。
下载完成后再用hash5检查一下文件是不是都下载对劲了就行,不对劲的使用hf_hub_download直接下载单个文件。