使用阿里云性能测试工具 JMeter 场景压测 RocketMQ 最佳实践

作者:森元

需求背景

新业务上线前,我们通常需要对系统的不同中间件进行压测,找到当前配置下中间件承受流量的上限,从而确定上游链路的限流规则,保护系统不因突发流量而崩溃。阿里云 PTS 的 JMeter 压测可以支持用户上传自定义的 JMeter 脚本,按照自定义的逻辑,借助 PTS 强大的分布式压测能力,对系统的不同中间件进行压测。下面,将以 JMeter5.5 和 RocketMQ5.0 系列为例,详细介绍如何使用 PTS 的 JMeter 场景压测 RocketMQ。

前置条件

  1. 已在本地安装 JMeter。
  2. 已在阿里云 ECS 上部署 RocketMQ(本文选择的是一台 8C32G 规格的 ECS)。
  3. 已在阿里云上开通 PTS 服务。

压测过程

JMeter 提供了扩展性极强的 JavaSampler,我们可以通过继承 AbstractJavaSamplerClient 类来自定义在 JavaSampler 中执行的逻辑,从而实现对 RocketMQ 进行压测。

步骤一:创建 Maven 项目,并引入依赖

  1. 新建 Maven 工程,并在 pom 文件中引入下面的依赖:
<dependency>
  <groupId>org.apache.jmeter</groupId>
  <artifactId>ApacheJMeter_java</artifactId>
  <version>5.5</version>
  <scope>provided</scope>
</dependency>
<dependency>
  <groupId>org.apache.rocketmq</groupId>
  <artifactId>rocketmq-client</artifactId>
  <version>4.9.5</version>
</dependency>

ApacheJMeter_java 是 JMeter JavaSampler 的依赖,rocketmq-client 是 RocketMQ 的客户端依赖(此处用 4.x 版本是因为 4.x 版本的客户端可以兼容 5.x 版本的服务端实例,但是 5.x 版本的客户端不能兼容 4.x 版本的服务端实例,可根据自己需求调整)。其中,要注意的是 ApacheJMeter_java 依赖的 scope 定义为  provided,JMeter 的 lib/ext 目录下已有该 JAR 包,因此不必将该依赖一起打包。

  1. 在 pom 文件中引入 maven-assembly-plugin 插件,此处使用 “jar-with-dependencies” 打包方式,将项目所需依赖和项目代码打包到同一个 JAR 包,后续可以只上传该 JAR 包到 PTS 的 JMeter 环境中,不用上传多个依赖 JAR 包:
<build>
  <finalName>jmeter-rocketmq4</finalName>
  <plugins>
    <plugin>
      <artifactId>maven-assembly-plugin</artifactId>
      <version>3.4.2</version>
      <configuration>
        <!-- 打包方式 -->
        <descriptorRefs>
          <descriptorRef>jar-with-dependencies</descriptorRef>
        </descriptorRefs>
      </configuration>
      <executions>
        <execution>
          <id>make-assembly</id>
          <phase>package</phase>
          <goals>
            <goal>single</goal>
          </goals>
        </execution>
      </executions>
    </plugin>
  </plugins>
</build>

步骤二:新建 AbstractJavaSamplerClient 的子类,并重写相关方法

AbstractJavaSamplerClient 类继承了 JavaSamplerClient 接口,该接口包含 setupTest、runTest、teardownTest 和 getDefaultParameters 四个方法:

  • setupTest

    JMeter 将为测试中的每个线程创建一个 JavaSamplerClient 实现实例,测试开始时,将在每个线程的 JavaSamplerClient 实例上调用 setupTest 来初始化客户端,本例中即初始化 RocketMQ 的 producer。

  • runTest

    每个线程每次迭代会调用一次 runTest 方法,本例中,需要在 runTest 方法里面定义消息发送的方法和采样结果的设置逻辑。

  • teardownTest

    迭代完设置的次数或时间后,此方法将会被执行,本例中,需要在此方法关闭 producer。

  • getDefaultParameters

    此方法定义了参数列表,这些参数通过会 JavaSamplerContext 传递给上述方法方法,在此方法内定义的参数,可以在 JMeter JavaRequest Sampler 的 GUI 界面设置值,本例中,需要定义 RocketMQ 的 broker 地址、topic 名称、消息 key、消息内容等参数。

新建子类参考如下:

import java.nio.charset.StandardCharsets;
import org.apache.jmeter.config.Arguments;
import org.apache.jmeter.protocol.java.sampler.AbstractJavaSamplerClient;
import org.apache.jmeter.protocol.java.sampler.JavaSamplerContext;
import org.apache.jmeter.samplers.SampleResult;
import org.apache.rocketmq.client.exception.MQBrokerException;
import org.apache.rocketmq.client.exception.MQClientException;
import org.apache.rocketmq.client.producer.DefaultMQProducer;
import org.apache.rocketmq.client.producer.SendResult;
import org.apache.rocketmq.common.message.Message;
import org.apache.rocketmq.remoting.exception.RemotingException;

public class JavaSamplerForRocketMQ extends AbstractJavaSamplerClient {
    private DefaultMQProducer producer;
    private static final String NAME_SRV_ADDRESS = "nameSrvAddress";
    private static final String TOPIC = "topic";
    private static final String PRODUCER_GROUP = "producer group";
    private static final String MSG_BODY = "messageBody";
    private static final String MSG_KEY = "messageKey";
    private static final String MSG_TAG = "messageTag";
    private static final String ERROR_CODE = "500";

    @Override
    public void setupTest(JavaSamplerContext javaSamplerContext) {

        try {
            // 初始化producer
            producer = new DefaultMQProducer(javaSamplerContext.getParameter(PRODUCER_GROUP));
            producer.setNamesrvAddr(javaSamplerContext.getParameter(NAME_SRV_ADDRESS));
            producer.start();
        } catch (MQClientException e) {
            throw new RuntimeException(e);
        }

    }

    @Override
    public SampleResult runTest(JavaSamplerContext javaSamplerContext) {
        SampleResult sampleResult = new SampleResult();
        sampleResult.setSampleLabel("rocketmq-producer");
        // 请求开始
        sampleResult.sampleStart();
        // 普通消息发送
        Message message = new Message(
            javaSamplerContext.getParameter(TOPIC),
            javaSamplerContext.getParameter(MSG_TAG),
            javaSamplerContext.getParameter(MSG_BODY).getBytes()
        );
        try {
            // 发送消息,需要关注发送结果,并捕获失败等异常。
            SendResult sendResult = producer.send(message);
            // 设置发送请求的字节数
            sampleResult.setSentBytes(message.toString().getBytes(StandardCharsets.UTF_8).length);
            sampleResult.setDataType(SampleResult.TEXT);
            // 设置请求内容
            sampleResult.setSamplerData(message.toString());
            // 设置响应内容
            sampleResult.setResponseData(String.format("Msg Id:%s", sendResult.getMsgId()).getBytes());
            sampleResult.setSuccessful(true);
            sampleResult.setResponseCodeOK();
        } catch (MQBrokerException | InterruptedException | RemotingException | MQClientException e) {
            sampleResult.setSuccessful(false);
            sampleResult.setResponseCode(ERROR_CODE);
            sampleResult.setResponseData(String.format("Error Msg:%s", e).getBytes());
            return sampleResult;
        } finally {
            // 请求结束
            sampleResult.sampleEnd();
        }
        return sampleResult;
    }

    @Override
    public void teardownTest(JavaSamplerContext javaSamplerContext) {
        producer.shutdown();
    }

    @Override
    public Arguments getDefaultParameters() {
        Arguments arguments = new Arguments();
        arguments.addArgument(NAME_SRV_ADDRESS, "");
        arguments.addArgument(PRODUCER_GROUP, "");
        arguments.addArgument(TOPIC, "");
        arguments.addArgument(MSG_KEY, "");
        arguments.addArgument(MSG_TAG, "");
        arguments.addArgument(MSG_BODY, "");
        return arguments;
    }
}

步骤三:打包项目成 JAR 文件

通过 mvn clean package 将项目打包,在 target 目录中可见 jmeter-rocketmq4.jar 和 jmeter-rocketmq4-jar-with-dependencies.jar 两个 JAR 包,其中 jmeter-rocketmq4-jar-with-dependencies.jar 包括了所需的依赖,在后续步骤中使用此 JAR 包。

.
├── pom.xml
├── src
│   ├── main
│   │   ├── java
│   │   │   └── JavaSamplerForRocketMQ4.java
│   │   └── resources
│   └── test
│       └── java
└── target
    ├── jmeter-rocketmq4-jar-with-dependencies.jar
    ├── jmeter-rocketmq4.jar

步骤四:使用 JMeter GUI 进行脚本编写和调试

  1. 将打包好的 JAR 包和依赖的 JAR 包复制到 JMETER_HOME/lib/ext 目录下,然后执行命令 JMETER_HOME/bin/jmeter 打开 JMeter GUI。

  2. 新建线程组后添加 Java 请求取样器。

图片

  1. 在下拉框中选择步骤二中新增的类(不一定和图片中的完全一致,按照实际的类全限定名选择),并填写下方相关参数。

图片

  1. 为线程组添加“查看结果树”和“汇总报告”监听器,然后启动测试计划,在结果树和汇总报告中验证测试的结果是否符合预期。

  2. 保存该测试计划为 JMX 文件。

步骤五:在 PTS 创建 JMeter 场景进行压测

  1. 在 PTS 控制台创建 JMeter 环境,将步骤三中打包的 JAR 包上传到该 JMeter 环境中(更多细节请参考 JMeter 环境管理的查看、修改及创建_性能测试-阿里云帮助中心 [ 1] ):

a. 进入 PTS 控制台,选择“JMeter 环境”;

b. 输入自定义的环境名;

c. 点击上传文件,选择步骤三中打包的 JAR 包;

d. 点击保存。

图片

  1. 在 PTS 控制台创建场景中选择“JMeter 压测”场景:

图片

  1. 编辑“场景配置”:

a. 自定义场景名;

b. 点击上传文件,选择步骤四中保存的 JMX 文件;

c. 在“使用依赖环境?”下拉框中选择“是,使用依赖环境”;

d. 在“选择依赖环境”下拉框选择刚刚创建的 JMeter 环境。

图片

  1. 施压配置:

小建议:由于我们是想通过压测找到 RocektMQ 能承受的最大并发请求数,因此建议选择 RPS 模式,这样可以直接衡量 RocektMQ 的承压能力。同时,考虑到公网带宽限制,应该选择阿里云 VPC 内网压测。

a. 选择压力来源为阿里云 VPC 内网,同时选择部署被压测 RocketMQ 的 ECS 所在区域;

b. 设置 ECS 的 VPC、安全组和交换机,注意 VPC 和安全组一定要和 ECS 相同,安全组中要打开响应的端口(在 ECS 控制台设置);

c. 设置压力模式为 RPS 模式;

d. 设置起始 RPS、最大 RPS 和压测时长,本文设置起始 RPS 为 90000,最大 RPS 为 110000,持续 2 分钟。

e. 指定循环一般设置为否,表示执行一次就结束,指定 IP 数会根据设置的 RPS 自动生成。

图片

  1. 其余设置请根据需求参考 JMeter 压测_性能测试-阿里云帮助中心 [ 2]

  2. 保存配置并调试场景,确认和 RocketMQ 的连通,之后可以开始进行压测。

步骤六:查看压测报告

JMeter 的压测报告通用解读可以参考如何查看 JMeter 压测数据、采样日志及施压机性能_性能测试-阿里云帮助中心 [ 3] ,下一节将介绍如何使用 PTS 的压测报告来找到 RocketMQ 的承压能力。

报告解读

  1. 首先,查看整个压测的概览信息和指标趋势。如下图所示,报告第一栏展示了整个压测过程的请求成功率、平均 RT、平均 TPS 等指标,这些指标可以在官方文档中找到具体解释。同时,根据成功率的趋势图所示,从 18:54:05 开始,成功率逐渐波动下降,此时的 TPS 值为 9.55W,代表 18:54:05 计算的前 5 秒平均 TPS 约为 9.55W。

图片

  1. 其次,使用压测报告中的 Prometheus 监控数据对结果进一步分析。借助阿里云 ARMS 的 Prometheus 和 Grafana 产品,PTS 的压测报告可以提供包括吞吐量、成功率和响应时长的时序图,同时,支持用户使用 PromQL 语句对数据面板进行编辑操作,灵活查询所需的数据,在本文中,我们可以将成功率和吞吐量放在一个 panel,来进一步分析。

a. 首先点击“成功率(时序)”,然后点击“Edit”,可进入成功率大盘的编辑界面,复制成功率的查询 PromQL:

sum(rate(pts_api_response_total{task_id="$task_id", code=~"200|302"}[5s]))/sum(rate(pts_api_response_total{task_id="$task_id"}[5s]))

图片

b. 然后进入吞吐量大盘的编辑界面,使用成功率的 PromQL 替换虚拟用户数的 PromQL,并更改 Grafana 的相关配置(下图中红框),便可得到展示吞吐量和成功率的面板。

图片

该面板展示的数据统计精度为 1 秒,可得到更精确的数据,在 18:54:05 秒时,成功率开始下降,此时 TPS 为 96561.9。

图片

c. 为了更好的评估 RocketMQ 的性能,我们还可以统计出成功率保持 100% 的时间范围内的平均 TPS,首先找到成功率为 100% 的持续时间,下图中为 47 秒,然后将计算 TPS 的指标的时间范围改成 47s,这样每个点都代表前 47s 的平均 TPS,将鼠标移动到成功率为 100% 的最后一个时间,当前时间的 TPS 值即为成功率为 100% 时间范围内的平均 TPS,即 89357.5。

图片

图片

  1. 最后,为了对比不同参数的设置对 RocketMQ 性能的影响,同时验证 PTS 在 RocketMQ 压测上的可用性,我们做了一个简单的对比实验,并通过 jstat 命令来观察不同参数对垃圾回收的影响。

图片

实验结果显示,对于当前 ECS 配置部署的 RocketMQ,适当调大堆内存可以有效提高 RocketMQ 的性能,当堆内存提高到 24g 时(此事 ECS 内存使用率达到 85.39%),性能没有显著提高;适当提高 sendMessageThreadPoolNums 的值可以提高 RocketMQ 的性能,当 sendMessageThreadPoolNums 超过 16 后,性能没有显著提高,甚至略有下降。用户可以根据实际情况,进行更详细的对比实验,来充分评估所部署的 RocketMQ 承压能力。

结束语

本文介绍了使用阿里云 PTS 的 JMeter 场景压测 RocketMQ 的详细步骤,对各环节逐一进行了说明,最后,通过对压测报告的自定义分析,展现了 PTS 强大的压测结果分析能力,借助 JMeter 和 PTS,用户可以对各类中间件进行灵活多维的分析,助力其构建起稳定健壮的系统。

最新活动&免费试用

相关链接:

[1] JMeter 环境管理的查看、修改及创建_性能测试-阿里云帮助中心

https://help.aliyun.com/document_detail/170857.html?spm=a2c4g.103173.0.0.292c20f8wnWyCV

[2] JMeter 压测_性能测试-阿里云帮助中心

https://help.aliyun.com/document_detail/97876.html?spm=a2c4g.91788.0.0.2fde6f338aHIDI

[3] 如何查看 JMeter 压测数据、采样日志及施压机性能_性能测试-阿里云帮助中心

https://help.aliyun.com/document_detail/127454.html?spm=a2c4g.94066.0.0.4a5164bepHmzWD

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/259791.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Apache Tomcat httpoxy 安全漏洞 CVE-2016-5388 已亲自复现

Apache Tomcat httpoxy 安全漏洞 CVE-2016-5388 已亲自复现 漏洞名称漏洞描述影响版本 漏洞复现环境搭建漏洞利用修复建议 总结 漏洞名称 漏洞描述 在Apache Tomcat中发现了一个被归类为关键的漏洞&#xff0c;该漏洞在8.5.4(Application Server Soft ware)以下。受影响的是组…

【科技前沿】数字孪生技术改革智慧供热,换热站3D可视化引领未来

换热站作为供热系统不可或缺的一部分&#xff0c;其能源消耗对城市环保至关重要。在双碳目标下&#xff0c;供热企业可通过搭建智慧供热系统&#xff0c;实现供热方式的低碳、高效、智能化&#xff0c;从而减少碳排放和能源浪费。通过应用物联网、大数据等高新技术&#xff0c;…

PaddleOCR Docker 容器快捷调用,快捷调用OCR API

文章目录 搞环境命令行测试Python调用测试转fastapi服务打包成镜像服务快速启动paddleOCR paddleOCR迎来大更新&#xff0c;搞一把新的api接口&#xff0c;直接用起来。 搞环境 搞容器&#xff1a; FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04 ENV DEBIAN_FRONTENDno…

亚马逊云科技-如何缩容/减小您的AWS EC2根卷大小-简明教程

一、背景 Amazon EBS提供了块级存储卷以用于 EC2 实例&#xff0c;EBS具备弹性的特点&#xff0c;可以动态的增加容量、更改卷类型以及修改预配置的IOPS值。但是EBS不能动态的减少容量&#xff0c;在实际使用中&#xff0c;用户也许会存在此类场景&#xff1a; 在创建AWS EC2…

CleanMyMac X2024(Mac清理工具) 4.15苹果MAC电脑版

CleanMyMac X中文2024版是一款mac系统清理垃圾软件&#xff0c;CleanMyMac已经完成了向全面清理&#xff0c;优化和管理工具的转变。它的算法和功能变得更加智能&#xff0c;但外观仍然像您预期的那样简单。CleanMyMac X以极其快速和时尚的方式为您提供及时的建议&#xff0c;组…

WEB渗透—PHP反序列化(六)

Web渗透—PHP反序列化 课程学习分享&#xff08;课程非本人制作&#xff0c;仅提供学习分享&#xff09; 靶场下载地址&#xff1a;GitHub - mcc0624/php_ser_Class: php反序列化靶场课程&#xff0c;基于课程制作的靶场 课程地址&#xff1a;PHP反序列化漏洞学习_哔哩…

高级算法设计与分析(一) -- 算法引论

系列文章目录 高级算法设计与分析&#xff08;一&#xff09; -- 算法引论 高级算法设计与分析&#xff08;二&#xff09; -- 递归与分治策略 高级算法设计与分析&#xff08;三&#xff09; -- 动态规划 未完待续【 高级算法设计与分析&#xff08;四&#xff09; -- 贪…

客服聊天机器人的设计方法

本文会来讨论基于文本的客服聊天机器人的设计方法。 两种客服模式 人工客服 传统的人工客服&#xff0c;完全由人工来提供客服服务&#xff0c;就是客服坐在电脑旁边&#xff0c;同时开n个聊天窗口回复客户。这种方式需要投入很多的人力&#xff0c;效率比较低下。人工客服经…

零售EDI:如何与EDEKA 建立EDI连接?

艾德卡EDEKA 是德国最大的食品零售商&#xff0c;因其采用“指纹付款”的方式进行结算&#xff0c;成为德国超市付款方式改革的先驱。 与EDEKA建立EDI连接&#xff0c;首先需要填写EDEKA提供的调查问卷&#xff0c;其中包括公司信息、EDI负责人信息、EDI供应商信息、销售部门信…

Jmeter实现CSV数据批量导入

CSV&#xff1a;逗号分隔值&#xff0c;是一种简洁且常见的数据存储格式。 1、参数化&#xff1a; 在Jmeter中&#xff0c;可以通过“用户自定义的变量”来实现参数化使操作方便&#xff0c;使用语法位&#xff1a;${参数名}&#xff0c;如下图&#xff1a; 而CSV也同理&…

android11-开机自启脚本

1. 编写myshell脚本 diff --git a/device/rockchip/rk356x/ok3568_r/myshell.sh b/device/rockchip/rk356x/ok3568_r/myshell.sh new file mode 100644 index 0000000000..c78b6d93bd --- /dev/nullb/device/rockchip/rk356x/ok3568_r/myshell.sh-0,0 1,4 #!/vendor/bin/shec…

ThinkPad E550c

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 例如&#xff1a;…

C语言—每日选择题—Day56

指针相关博客 打响指针的第一枪&#xff1a;指针家族-CSDN博客 深入理解&#xff1a;指针变量的解引用 与 加法运算-CSDN博客 第一题 1. 以下叙述中正确的是&#xff08;&#xff09; A&#xff1a;\0 表示字符 0 B&#xff1a;"a" 表示一个字符常量 C&#xff1a;表…

C++内存布局(一)

温故而知新&#xff0c;本文浅聊和回顾下C内存布局的知识。 一、c内存布局 C的内存布局主要包括以下几个部分&#xff1a; 代码段&#xff1a;存储程序的机器代码。.数据段&#xff1a;存储全局变量和静态变量。数据段又分为初始化数据段&#xff08;存储初始化的全局变量和…

JVM基础原理篇-透彻理解类加载子系统(学习笔记)

一、从Hello World轻松理解类加载的基本过程 1.类加载子系统整体工作过程 大白话&#xff1a; 符号引用 - 相当于建房子的图纸&#xff0c;在字节码文件中 直接引用 - 建房子&#xff0c;在Java的内存模型中 这里需要注意下面的代码 这里为什么先在静态代码块给a赋值20&#xf…

(四)pytorch图像识别实战之用resnet18实现花朵分类(代码+详细注解)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、关于这个实战的一些知识点Q1&#xff1a;图像识别实战常用模块解读Q2:数据增强Q3:迁移学习Q4&#xff1a;平均全局池化Q5&#xff1a;设置哪些层需要训练时…

MongoDB的原子操作findAndReplace、findOneAndDelete和deleteMany

本文主要介绍MongoDB的原子操作findAndReplace、findOneAndDelete和deleteMany。 目录 MongoDB的原子操作一、findAndReplace二、findOneAndDelete三、deleteMany MongoDB的原子操作 MongoDB的原子操作指的是在单个操作中对数据库的数据进行读取和修改&#xff0c;并确保操作是…

JaCoCo 统计度量

1、JaCoCo: 一个判断算2个Branch&#xff0c;最后一个括号算一行 2、IDEA&#xff1a;一个判断算一个Branch&#xff0c;最后一个括号不算一行

代码随想录算法训练营Day5 | 454.四数相加||、383.赎金信、35.三个之和、18.四数之和

LeetCode 454 四数相加 || 本题思路&#xff1a; 如果使用暴力的话就是 4 层 for 循环&#xff0c;这个时间复杂度就是 O(n^4) 了。 所以我们可以使用 map &#xff0c;来解决这道题&#xff0c;和之前的两数之和一样&#xff0c;之前是 遍历一个&#xff0c;存进去一个。 如果…

一个真正的软件测试从业人员必备技能有哪些?

协同开发能力&#xff1a; 1. 项目管理&#xff08;SVN、Git&#xff09; 2. 数据分析能力&#xff08;Fiddler、Charles、浏览器F12&#xff09;。 接口测试&#xff1a; 1. 概念及接口测试原理概念&#xff08;概念、接口测试原理&#xff09; 2. 接口测试工具&#xff…