文章目录
- 1.1 一点的应力状态
- 1.2 一点主应力状态
- 1.3 应力偏张量、球张量、应力不变量
1.1 一点的应力状态
物体在受到外力或者自身不均匀的温度场等作用时,在其内部会产生内力,物体的内力与方向和截面都有关系。假设有一个受到外力作用的变形体,被一个平面截成A、B两个部分,B部分对A部分施加有作用力,在该截面上的dS微小面积上,作用力为dP,那么我们成dP与dS的比例极限为应力,如下式
σ
=
lim
Δ
S
→
0
d
P
d
S
(1)
\boldsymbol\sigma=\lim_{\Delta S\to0} \frac{d\mathbf P}{dS}\tag{1}
σ=ΔS→0limdSdP(1)
上式黑体表明是方向相关量。
应力是有方向,我们规定垂直于截面的分量成为正应力,平行于截面的分量为剪应力。
为了分析一点的应力状态,从物体内任一点取一微小的四面体单元,如下图。其中
σ
x
x
\sigma_{xx}
σxx、
σ
y
y
\sigma_{yy}
σyy、
σ
z
z
\sigma_{zz}
σzz为正应力,
τ
x
y
\tau_{xy}
τxy、
τ
x
z
\tau_{xz}
τxz、
τ
y
z
\tau_{yz}
τyz、
τ
y
x
\tau_{yx}
τyx、
τ
z
x
\tau_{zx}
τzx、
τ
z
y
\tau_{zy}
τzy为剪应力,在很多时候我们借鉴矩阵的应用,将这些分量放在一起来表示一点的应力状态,比如如下形式。(实际上,更方便的表示一点的应力状态就是应力张量,后面在专门学习张量的时候引入张量的概念和计算,应力张量是二阶张量,具有矩阵的显像化形式)
写成矩阵形式,如下式
[
σ
x
x
τ
x
y
τ
x
z
τ
y
x
σ
y
y
τ
y
z
τ
z
x
τ
z
y
σ
z
z
]
\begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz}\\ \tau_{yx} & \sigma_{yy} & \tau_{yz}\\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{bmatrix}
σxxτyxτzxτxyσyyτzyτxzτyzσzz
1.2 一点主应力状态
假设该斜面上只有正应力分量,没有剪应力,即四面体的斜面上
σ
v
\boldsymbol\sigma_{v}
σv为正应力,其中
σ
v
\boldsymbol\sigma_{v}
σv的应力方向余弦为
(
l
,
m
,
n
)
(l,m,n)
(l,m,n),根据力的平衡,可得下式。
σ
x
x
⋅
S
Δ
B
O
C
+
τ
z
x
⋅
S
Δ
A
O
B
+
τ
y
x
⋅
S
Δ
A
O
C
=
σ
v
x
S
Δ
A
B
C
σ
y
y
⋅
S
Δ
A
O
C
+
τ
z
y
⋅
S
Δ
A
O
B
+
τ
x
y
⋅
S
Δ
B
O
C
=
σ
v
y
S
Δ
A
B
C
σ
z
z
⋅
S
Δ
A
O
B
+
τ
y
z
⋅
S
Δ
A
O
C
+
τ
x
z
⋅
S
Δ
B
O
C
=
σ
v
z
S
Δ
A
B
C
(2)
\sigma_{xx}\cdot S_{\Delta BOC}+\tau_{zx}\cdot S_{\Delta AOB}+\tau_{yx}\cdot S_{\Delta AOC}=\sigma_{vx}S_{\Delta ABC}\\ \sigma_{yy}\cdot S_{\Delta AOC}+\tau_{zy}\cdot S_{\Delta AOB}+\tau_{xy}\cdot S_{\Delta BOC}=\sigma_{vy}S_{\Delta ABC}\\ \sigma_{zz}\cdot S_{\Delta AOB}+\tau_{yz}\cdot S_{\Delta AOC}+\tau_{xz}\cdot S_{\Delta BOC}=\sigma_{vz}S_{\Delta ABC}\tag{2}
σxx⋅SΔBOC+τzx⋅SΔAOB+τyx⋅SΔAOC=σvxSΔABCσyy⋅SΔAOC+τzy⋅SΔAOB+τxy⋅SΔBOC=σvySΔABCσzz⋅SΔAOB+τyz⋅SΔAOC+τxz⋅SΔBOC=σvzSΔABC(2)
其中
S
Δ
A
O
C
=
1
2
d
x
d
z
=
S
Δ
A
B
C
⋅
m
S
Δ
A
O
B
=
1
2
d
x
d
y
=
S
Δ
A
B
C
⋅
n
S
Δ
B
O
C
=
1
2
d
y
d
z
=
S
Δ
A
B
C
⋅
l
(3)
S_{\Delta AOC}=\frac{1}{2}dxdz=S_{\Delta ABC}\cdot m\\ S_{\Delta AOB}=\frac{1}{2}dxdy=S_{\Delta ABC}\cdot n\\ S_{\Delta BOC}=\frac{1}{2}dydz=S_{\Delta ABC}\cdot l \tag{3}
SΔAOC=21dxdz=SΔABC⋅mSΔAOB=21dxdy=SΔABC⋅nSΔBOC=21dydz=SΔABC⋅l(3)
那么力平衡方程改为
σ
x
x
⋅
l
+
τ
z
x
⋅
n
+
τ
y
x
⋅
m
=
σ
v
x
=
σ
v
l
σ
y
y
⋅
m
+
τ
z
y
⋅
n
+
τ
x
y
⋅
l
=
σ
v
y
=
σ
v
m
σ
z
z
⋅
n
+
τ
y
z
⋅
m
+
τ
x
z
⋅
l
=
σ
v
z
=
σ
v
n
(4)
\sigma_{xx}\cdot l+\tau_{zx}\cdot n+\tau_{yx}\cdot m=\sigma_{vx}=\sigma_{v}l\\ \sigma_{yy}\cdot m+\tau_{zy}\cdot n+\tau_{xy}\cdot l=\sigma_{vy}=\sigma_{v}m\\ \sigma_{zz}\cdot n+\tau_{yz}\cdot m+\tau_{xz}\cdot l=\sigma_{vz}=\sigma_{v}n \tag{4}
σxx⋅l+τzx⋅n+τyx⋅m=σvx=σvlσyy⋅m+τzy⋅n+τxy⋅l=σvy=σvmσzz⋅n+τyz⋅m+τxz⋅l=σvz=σvn(4)
合并同类相,将其改为
(
σ
x
x
−
σ
v
)
⋅
l
+
τ
y
x
⋅
m
+
τ
z
x
⋅
n
=
0
τ
x
y
⋅
l
+
(
σ
y
y
−
σ
v
)
⋅
m
+
τ
z
y
⋅
n
=
0
τ
x
z
⋅
l
+
τ
y
z
⋅
m
+
(
σ
z
z
−
σ
v
)
⋅
n
=
0
(5)
(\sigma_{xx}-\sigma_{v})\cdot l+\tau_{yx}\cdot m+\tau_{zx}\cdot n=0\\ \tau_{xy}\cdot l+(\sigma_{yy}-\sigma_{v})\cdot m+\tau_{zy}\cdot n=0\\ \tau_{xz}\cdot l+\tau_{yz}\cdot m+(\sigma_{zz}-\sigma_{v})\cdot n=0 \tag{5}
(σxx−σv)⋅l+τyx⋅m+τzx⋅n=0τxy⋅l+(σyy−σv)⋅m+τzy⋅n=0τxz⋅l+τyz⋅m+(σzz−σv)⋅n=0(5)
写成矩阵形式,如下式
[
σ
x
x
−
σ
v
τ
y
x
τ
z
x
τ
x
y
σ
y
y
−
σ
v
τ
z
y
τ
x
z
τ
y
z
σ
z
z
−
σ
v
]
[
l
m
n
]
=
[
0
0
0
]
(6)
\begin{bmatrix} \sigma_{xx}-\sigma_{v} & \tau_{yx} & \tau_{zx}\\ \tau_{xy} & \sigma_{yy}-\sigma_{v} & \tau_{zy}\\ \tau_{xz} & \tau_{yz} & \sigma_{zz}-\sigma_{v} \end{bmatrix} \begin{bmatrix} l \\m \\n \end{bmatrix}= \begin{bmatrix} 0 \\0 \\0 \end{bmatrix} \tag{6}
σxx−σvτxyτxzτyxσyy−σvτyzτzxτzyσzz−σv
lmn
=
000
(6)
方向余弦存在非零解,那么系数行列式需为零,如下所示。
∣
σ
x
x
−
σ
v
τ
y
x
τ
z
x
τ
x
y
σ
y
y
−
σ
v
τ
z
y
τ
x
z
τ
y
z
σ
z
z
−
σ
v
∣
=
0
(7)
\begin{vmatrix} \sigma_{xx}-\sigma_{v} & \tau_{yx} & \tau_{zx}\\ \tau_{xy} & \sigma_{yy}-\sigma_{v} & \tau_{zy}\\ \tau_{xz} & \tau_{yz} & \sigma_{zz}-\sigma_{v} \end{vmatrix}=0 \tag{7}
σxx−σvτxyτxzτyxσyy−σvτyzτzxτzyσzz−σv
=0(7)
将其展开,如下式,并利用剪应力互等关系。
∣
σ
x
x
−
σ
v
τ
y
x
τ
z
x
τ
x
y
σ
y
y
−
σ
v
τ
z
y
τ
x
z
τ
y
z
σ
z
z
−
σ
v
∣
=
(
σ
x
x
−
σ
v
)
(
σ
y
y
−
σ
v
)
(
σ
z
z
−
σ
v
)
+
τ
y
x
τ
z
y
τ
x
z
+
τ
z
x
τ
x
y
τ
y
z
−
(
σ
y
y
−
σ
v
)
τ
z
x
τ
x
z
−
(
σ
z
z
−
σ
v
)
τ
y
x
τ
x
y
−
(
σ
x
x
−
σ
v
)
τ
z
y
τ
y
z
=
σ
x
x
σ
y
y
σ
z
z
−
(
σ
x
x
σ
y
y
+
σ
x
x
σ
z
z
+
σ
y
y
σ
z
z
)
σ
v
+
(
σ
x
x
+
σ
y
y
+
σ
z
z
)
σ
v
2
−
σ
v
3
+
2
τ
x
z
τ
x
y
τ
y
z
+
(
τ
x
z
2
+
τ
x
y
2
+
τ
y
z
2
)
σ
v
−
σ
y
y
τ
x
z
2
−
σ
z
z
τ
x
y
2
−
σ
x
x
τ
y
z
2
=
−
σ
v
3
+
(
σ
x
x
+
σ
y
y
+
σ
z
z
)
σ
v
2
+
(
τ
x
z
2
+
τ
x
y
2
+
τ
y
z
2
−
σ
x
x
σ
y
y
−
σ
x
x
σ
z
z
−
σ
y
y
σ
z
z
)
σ
v
+
σ
x
x
σ
y
y
σ
z
z
+
2
τ
x
z
τ
x
y
τ
y
z
−
σ
y
y
τ
x
z
2
−
σ
z
z
τ
x
y
2
−
σ
x
x
τ
y
z
2
=
−
σ
v
3
+
I
1
σ
v
2
+
I
2
σ
v
+
I
3
(8)
\begin{aligned} \begin{vmatrix} \sigma_{xx}-\sigma_{v} & \tau_{yx} & \tau_{zx}\\ \tau_{xy} & \sigma_{yy}-\sigma_{v} & \tau_{zy}\\ \tau_{xz} & \tau_{yz} & \sigma_{zz}-\sigma_{v} \end{vmatrix}=&(\sigma_{xx}-\sigma_{v})(\sigma_{yy}-\sigma_{v})(\sigma_{zz}-\sigma_{v})+\tau_{yx}\tau_{zy}\tau_{xz}+\tau_{zx}\tau_{xy}\tau_{yz}\\ &-(\sigma_{yy}-\sigma_{v})\tau_{zx}\tau_{xz}-(\sigma_{zz}-\sigma_{v})\tau_{yx}\tau_{xy}-(\sigma_{xx}-\sigma_{v})\tau_{zy}\tau_{yz}\\ =&\sigma_{xx}\sigma_{yy}\sigma_{zz}-(\sigma_{xx}\sigma_{yy}+\sigma_{xx}\sigma_{zz}+\sigma_{yy}\sigma_{zz})\sigma_{v}+(\sigma_{xx}+\sigma_{yy}+\sigma_{zz})\sigma_{v}^2\\ &-\sigma_{v}^3+2\tau_{xz}\tau_{xy}\tau_{yz}+(\tau_{xz}^2+\tau_{xy}^2+\tau_{yz}^2)\sigma_{v}-\sigma_{yy}\tau_{xz}^2-\sigma_{zz}\tau_{xy}^2-\sigma_{xx}\tau_{yz}^2\\ =&-\sigma_{v}^3+(\sigma_{xx}+\sigma_{yy}+\sigma_{zz})\sigma_{v}^2+\\ &(\tau_{xz}^2+\tau_{xy}^2+\tau_{yz}^2-\sigma_{xx}\sigma_{yy}-\sigma_{xx}\sigma_{zz}-\sigma_{yy}\sigma_{zz})\sigma_{v}+\\ &\sigma_{xx}\sigma_{yy}\sigma_{zz}+2\tau_{xz}\tau_{xy}\tau_{yz}-\sigma_{yy}\tau_{xz}^2-\sigma_{zz}\tau_{xy}^2-\sigma_{xx}\tau_{yz}^2\\ =&-\sigma_{v}^3+I_1\sigma_{v}^2+I_2\sigma_{v}+I_3 \end{aligned}\tag{8}
σxx−σvτxyτxzτyxσyy−σvτyzτzxτzyσzz−σv
====(σxx−σv)(σyy−σv)(σzz−σv)+τyxτzyτxz+τzxτxyτyz−(σyy−σv)τzxτxz−(σzz−σv)τyxτxy−(σxx−σv)τzyτyzσxxσyyσzz−(σxxσyy+σxxσzz+σyyσzz)σv+(σxx+σyy+σzz)σv2−σv3+2τxzτxyτyz+(τxz2+τxy2+τyz2)σv−σyyτxz2−σzzτxy2−σxxτyz2−σv3+(σxx+σyy+σzz)σv2+(τxz2+τxy2+τyz2−σxxσyy−σxxσzz−σyyσzz)σv+σxxσyyσzz+2τxzτxyτyz−σyyτxz2−σzzτxy2−σxxτyz2−σv3+I1σv2+I2σv+I3(8)
其中
I
1
I_1
I1、
I
2
I_2
I2、
I
3
I_3
I3成为应力不变量,如下所示。
I
1
=
σ
x
x
+
σ
y
y
+
σ
z
z
=
t
r
[
σ
]
I
2
=
τ
x
z
2
+
τ
x
y
2
+
τ
y
z
2
−
σ
x
x
σ
y
y
−
σ
x
x
σ
z
z
−
σ
y
y
σ
z
z
I
3
=
σ
x
x
σ
y
y
σ
z
z
+
2
τ
x
z
τ
x
y
τ
y
z
−
σ
y
y
τ
x
z
2
−
σ
z
z
τ
x
y
2
−
σ
x
x
τ
y
z
2
=
∣
σ
∣
(9)
I_1=\sigma_{xx}+\sigma_{yy}+\sigma_{zz}=tr[\boldsymbol \sigma]\\ I_2=\tau_{xz}^2+\tau_{xy}^2+\tau_{yz}^2-\sigma_{xx}\sigma_{yy}-\sigma_{xx}\sigma_{zz}-\sigma_{yy}\sigma_{zz}\\ I_3=\sigma_{xx}\sigma_{yy}\sigma_{zz}+2\tau_{xz}\tau_{xy}\tau_{yz}-\sigma_{yy}\tau_{xz}^2-\sigma_{zz}\tau_{xy}^2-\sigma_{xx}\tau_{yz}^2=|\boldsymbol \sigma| \tag{9}
I1=σxx+σyy+σzz=tr[σ]I2=τxz2+τxy2+τyz2−σxxσyy−σxxσzz−σyyσzzI3=σxxσyyσzz+2τxzτxyτyz−σyyτxz2−σzzτxy2−σxxτyz2=∣σ∣(9)
难么,公式(7)就变为
∣
σ
x
x
−
σ
v
τ
y
x
τ
z
x
τ
x
y
σ
y
y
−
σ
v
τ
z
y
τ
x
z
τ
y
z
σ
z
z
−
σ
v
∣
=
−
σ
v
3
+
I
1
σ
v
2
+
I
2
σ
v
+
I
3
=
0
(10)
\begin{aligned} \begin{vmatrix} \sigma_{xx}-\sigma_{v} & \tau_{yx} & \tau_{zx}\\ \tau_{xy} & \sigma_{yy}-\sigma_{v} & \tau_{zy}\\ \tau_{xz} & \tau_{yz} & \sigma_{zz}-\sigma_{v} \end{vmatrix}=-\sigma_{v}^3+I_1\sigma_{v}^2+I_2\sigma_{v}+I_3=0 \end{aligned}\tag{10}
σxx−σvτxyτxzτyxσyy−σvτyzτzxτzyσzz−σv
=−σv3+I1σv2+I2σv+I3=0(10)
那么
σ
v
\boldsymbol\sigma_{v}
σv可以通过公式(10)来求解,回代公式(6),可以解的
(
l
,
m
,
n
)
(l,m,n)
(l,m,n)。
根据三次方程的韦达定理,有三个方程的根(也就是主应力)的和等于下式。
σ
1
+
σ
2
+
σ
3
=
−
I
1
−
1
=
I
1
(11)
\sigma_1+\sigma_2+\sigma_3=-\frac{I_1}{-1}=I_1\tag{11}
σ1+σ2+σ3=−−1I1=I1(11)
其实观察上面的计算,不难发现,正应力 σ v \boldsymbol\sigma_{v} σv和方向余弦 ( l , m , n ) (l,m,n) (l,m,n)为应力矩阵的特征值和特征向量。
1.3 应力偏张量、球张量、应力不变量
下图为能反映一点的应力状态的六面体,众多的金属实验表明(在常见的应力范围内)当六面体各个面上只有相等正应力无切应力时,物体不发生塑性变形和形状变化。由此,定义了这么一种应力状态,即
[
σ
m
]
=
[
σ
m
0
0
0
σ
m
0
0
0
σ
m
]
(12)
[\boldsymbol\sigma_m]=\begin{bmatrix} \sigma_{m} & 0 & 0\\ 0 & \sigma_{m} & 0\\ 0 & 0 & \sigma_{m} \end{bmatrix}\tag{12}
[σm]=
σm000σm000σm
(12)
σ
m
=
σ
1
=
σ
2
=
σ
3
=
1
3
(
σ
1
+
σ
2
+
σ
3
)
=
1
3
I
1
(13)
\sigma_m=\sigma_1=\sigma_2=\sigma_3=\frac{1}{3}(\sigma_1+\sigma_2+\sigma_3)=\frac{1}{3}I_1\tag{13}
σm=σ1=σ2=σ3=31(σ1+σ2+σ3)=31I1(13)
那么将应力张量减去应力应力球张量,可得应力偏张量(同时可以确定的是[s]也是对称矩阵,由于剪应力互等)
[
s
]
=
[
σ
x
x
−
σ
m
τ
x
y
τ
x
z
τ
y
x
σ
y
y
−
σ
m
τ
y
z
τ
z
x
τ
z
y
σ
z
z
−
σ
m
]
=
[
s
x
x
s
x
y
s
x
z
s
y
x
s
y
y
s
y
z
s
z
x
s
z
y
s
z
z
]
(14)
[\boldsymbol s]=\begin{bmatrix} \sigma_{xx}-\sigma_{m} & \tau_{xy} & \tau_{xz}\\ \tau_{yx} & \sigma_{yy}-\sigma_{m} & \tau_{yz}\\ \tau_{zx} & \tau_{zy} & \sigma_{zz}-\sigma_{m} \end{bmatrix} =\begin{bmatrix} s_{xx} & s_{xy} & s_{xz}\\ s_{yx} & s_{yy} & s_{yz}\\ s_{zx} & s_{zy} & s_{zz} \end{bmatrix}\tag{14}
[s]=
σxx−σmτyxτzxτxyσyy−σmτzyτxzτyzσzz−σm
=
sxxsyxszxsxysyyszysxzsyzszz
(14)
同样,按照1.2的过程,可以得到应力偏张量的主应力的公式如下所示。
∣
s
x
x
−
s
v
s
y
x
s
z
x
s
x
y
s
y
y
−
s
v
s
z
y
s
x
z
s
y
z
s
z
z
−
s
v
∣
=
∣
s
x
x
−
s
v
s
x
y
s
x
z
s
y
x
s
y
y
−
s
v
s
y
z
s
z
x
s
z
y
s
z
z
−
s
v
∣
=
−
s
v
3
+
I
^
1
s
v
2
+
I
^
2
s
v
+
I
^
3
=
0
(15)
\begin{aligned} \begin{vmatrix} s_{xx}-s_{v} & s_{yx} & s_{zx}\\ s_{xy} & s_{yy}-s_{v} & s_{zy}\\ s_{xz} & s_{yz} & s_{zz}-s_{v} \end{vmatrix}&=\begin{vmatrix} s_{xx}-s_{v} & s_{xy} & s_{xz}\\ s_{yx} & s_{yy}-s_{v} & s_{yz}\\ s_{zx} & s_{zy} & s_{zz}-s_{v} \end{vmatrix}\\ &=-s_{v}^3+\hat I_1s_{v}^2+\hat I_2s_{v}+\hat I_3=0 \end{aligned}\tag{15}
sxx−svsxysxzsyxsyy−svsyzszxszyszz−sv
=
sxx−svsyxszxsxysyy−svszysxzsyzszz−sv
=−sv3+I^1sv2+I^2sv+I^3=0(15)
其中,有应力偏张量的不变量如下所示。
I
^
1
=
s
x
x
+
s
y
y
+
s
z
z
=
σ
x
x
−
σ
m
+
σ
y
y
−
σ
m
+
σ
z
z
−
σ
m
=
0
I
^
2
=
s
x
z
2
+
s
x
y
2
+
s
y
z
2
−
s
x
x
s
y
y
−
s
x
x
s
z
z
−
s
y
y
s
z
z
I
^
3
=
s
x
x
s
y
y
s
z
z
+
2
s
x
z
s
x
y
s
y
z
−
s
y
y
s
x
z
2
−
s
z
z
s
x
y
2
−
s
x
x
s
y
z
2
(16)
\hat I_1=s_{xx}+s_{yy}+s_{zz}=\sigma_{xx}-\sigma_{m} + \sigma_{yy}-\sigma_{m}+ \sigma_{zz}-\sigma_{m}=0\\ \hat I_2=s_{xz}^2+s_{xy}^2+s_{yz}^2-s_{xx}s_{yy}-s_{xx}s_{zz}-s_{yy}s_{zz}\\ \hat I_3=s_{xx}s_{yy}s_{zz}+2s_{xz}s_{xy}s_{yz}-s_{yy}s_{xz}^2-s_{zz}s_{xy}^2-s_{xx}s_{yz}^2 \tag{16}
I^1=sxx+syy+szz=σxx−σm+σyy−σm+σzz−σm=0I^2=sxz2+sxy2+syz2−sxxsyy−sxxszz−syyszzI^3=sxxsyyszz+2sxzsxysyz−syysxz2−szzsxy2−sxxsyz2(16)
对公式(15)进行展开合并同类项等过程,如下所示,
−
s
v
3
+
I
^
1
s
v
2
+
I
^
2
s
v
+
I
^
3
=
−
s
v
3
+
I
^
2
s
v
+
I
^
3
=
−
s
v
3
+
(
s
x
z
2
+
s
x
y
2
+
s
y
z
2
−
s
x
x
s
y
y
−
s
x
x
s
z
z
−
s
y
y
s
z
z
)
s
v
+
s
x
x
s
y
y
s
z
z
+
2
s
x
z
s
x
y
s
y
z
−
s
y
y
s
x
z
2
−
s
z
z
s
x
y
2
−
s
x
x
s
y
z
2
=
−
s
v
3
+
(
τ
x
z
2
+
τ
x
y
2
+
τ
y
z
2
)
s
v
−
[
(
σ
x
x
−
σ
m
)
(
σ
y
y
−
σ
m
)
+
(
σ
x
x
−
σ
m
)
(
σ
z
z
−
σ
m
)
+
(
σ
y
y
−
σ
m
)
(
σ
z
z
−
σ
m
)
]
s
v
+
(
σ
x
x
−
σ
m
)
(
σ
y
y
−
σ
m
)
(
σ
z
z
−
σ
m
)
+
2
τ
x
z
τ
x
y
τ
y
z
−
(
σ
y
y
−
σ
m
)
τ
x
z
2
−
(
σ
z
z
−
σ
m
)
τ
x
y
2
−
(
σ
x
x
−
σ
m
)
τ
y
z
2
=
−
s
v
3
+
(
τ
x
z
2
+
τ
x
y
2
+
τ
y
z
2
)
s
v
−
(
σ
x
x
σ
y
y
+
σ
x
x
σ
z
z
+
σ
y
y
σ
z
z
)
s
v
+
(
σ
x
x
+
σ
y
y
+
σ
x
x
+
σ
z
z
+
σ
y
y
+
σ
z
z
)
σ
m
s
v
−
3
σ
m
2
s
v
+
σ
x
x
σ
y
y
σ
z
z
−
(
σ
x
x
σ
y
y
+
σ
x
x
σ
z
z
+
σ
y
y
σ
z
z
)
σ
m
+
(
σ
x
x
+
σ
y
y
+
σ
z
z
)
σ
m
2
−
σ
m
3
+
2
τ
x
z
τ
x
y
τ
y
z
−
(
σ
y
y
τ
x
z
2
+
σ
z
z
τ
x
y
2
+
σ
x
x
τ
y
z
2
)
+
(
τ
x
z
2
+
τ
x
y
2
+
τ
y
z
2
)
σ
m
=
−
s
v
3
+
(
τ
x
z
2
+
τ
x
y
2
+
τ
y
z
2
)
(
s
v
+
σ
m
)
−
(
σ
x
x
σ
y
y
+
σ
x
x
σ
z
z
+
σ
y
y
σ
z
z
)
(
s
v
+
σ
m
)
+
6
σ
m
2
s
v
−
3
σ
m
2
s
v
+
σ
x
x
σ
y
y
σ
z
z
+
3
σ
m
3
−
σ
m
3
+
2
τ
x
z
τ
x
y
τ
y
z
−
(
σ
y
y
τ
x
z
2
+
σ
z
z
τ
x
y
2
+
σ
x
x
τ
y
z
2
)
=
−
s
v
3
+
3
σ
m
2
s
v
+
2
σ
m
3
+
(
τ
x
z
2
+
τ
x
y
2
+
τ
y
z
2
−
σ
x
x
σ
y
y
−
σ
x
x
σ
z
z
−
σ
y
y
σ
z
z
)
(
s
v
+
σ
m
)
+
σ
x
x
σ
y
y
σ
z
z
+
2
τ
x
z
τ
x
y
τ
y
z
−
(
σ
y
y
τ
x
z
2
+
σ
z
z
τ
x
y
2
+
σ
x
x
τ
y
z
2
)
=
−
s
v
3
−
σ
m
3
+
3
σ
m
2
s
v
+
3
σ
m
3
+
I
2
(
s
v
+
σ
m
)
+
I
3
=
−
(
s
v
+
σ
m
)
(
s
v
2
−
s
v
σ
m
+
σ
m
2
−
3
σ
m
2
)
+
I
2
(
s
v
+
σ
m
)
+
I
3
=
−
(
s
v
+
σ
m
)
(
s
v
+
σ
m
)
(
s
v
−
2
σ
m
)
+
I
2
(
s
v
+
σ
m
)
+
I
3
=
−
(
s
v
+
σ
m
)
2
(
s
v
+
σ
m
−
3
σ
m
)
+
I
2
(
s
v
+
σ
m
)
+
I
3
=
−
(
s
v
+
σ
m
)
3
+
3
σ
m
(
s
v
+
σ
m
)
2
+
I
2
(
s
v
+
σ
m
)
+
I
3
=
−
(
s
v
+
σ
m
)
3
+
I
1
(
s
v
+
σ
m
)
2
+
I
2
(
s
v
+
σ
m
)
+
I
3
=
0
(17)
\begin{aligned} -s_{v}^3+\hat I_1s_{v}^2+\hat I_2s_{v}+\hat I_3&=-s_{v}^3+\hat I_2s_{v}+\hat I_3\\ &=-s_{v}^3+(s_{xz}^2+s_{xy}^2+s_{yz}^2-s_{xx}s_{yy}-s_{xx}s_{zz}-s_{yy}s_{zz})s_{v}\\ &\quad+s_{xx}s_{yy}s_{zz}+2s_{xz}s_{xy}s_{yz}-s_{yy}s_{xz}^2-s_{zz}s_{xy}^2-s_{xx}s_{yz}^2\\ &=-s_{v}^3+(\tau_{xz}^2+\tau_{xy}^2+\tau_{yz}^2)s_{v} \\ &\quad- [(\sigma_{xx}-\sigma_{m})(\sigma_{yy}-\sigma_{m})+(\sigma_{xx}-\sigma_{m})(\sigma_{zz}-\sigma_{m})+(\sigma_{yy}-\sigma_{m})( \sigma_{zz}-\sigma_{m})]s_{v}\\ &\quad+(\sigma_{xx}-\sigma_{m})(\sigma_{yy}-\sigma_{m})(\sigma_{zz}-\sigma_{m})+2\tau_{xz}\tau_{xy}\tau_{yz}\\ &\quad-(\sigma_{yy}-\sigma_{m})\tau_{xz}^2-(\sigma_{zz}-\sigma_{m})\tau_{xy}^2-(\sigma_{xx}-\sigma_{m})\tau_{yz}^2\\ &=-s_{v}^3+(\tau_{xz}^2+\tau_{xy}^2+\tau_{yz}^2)s_{v}-(\sigma_{xx}\sigma_{yy}+\sigma_{xx}\sigma_{zz}+\sigma_{yy}\sigma_{zz})s_{v}\\ &\quad+(\sigma_{xx}+\sigma_{yy}+\sigma_{xx}+\sigma_{zz}+\sigma_{yy}+\sigma_{zz})\sigma_{m}s_{v}-3\sigma_{m}^2s_{v}+\sigma_{xx}\sigma_{yy}\sigma_{zz}\\ &\quad-(\sigma_{xx}\sigma_{yy}+\sigma_{xx}\sigma_{zz}+\sigma_{yy}\sigma_{zz})\sigma_{m}+(\sigma_{xx}+\sigma_{yy}+\sigma_{zz})\sigma_{m}^2-\sigma_{m}^3+2\tau_{xz}\tau_{xy}\tau_{yz}\\ &\quad-(\sigma_{yy}\tau_{xz}^2+\sigma_{zz}\tau_{xy}^2+\sigma_{xx}\tau_{yz}^2)+(\tau_{xz}^2+\tau_{xy}^2+\tau_{yz}^2)\sigma_{m}\\ &=-s_{v}^3+(\tau_{xz}^2+\tau_{xy}^2+\tau_{yz}^2)(s_{v}+\sigma_{m})-(\sigma_{xx}\sigma_{yy}+\sigma_{xx}\sigma_{zz}+\sigma_{yy}\sigma_{zz})(s_{v}+\sigma_{m})\\ &\quad+6\sigma_{m}^2s_{v}-3\sigma_{m}^2s_{v}+\sigma_{xx}\sigma_{yy}\sigma_{zz}+3\sigma_{m}^3-\sigma_{m}^3+2\tau_{xz}\tau_{xy}\tau_{yz}\\ &\quad-(\sigma_{yy}\tau_{xz}^2+\sigma_{zz}\tau_{xy}^2+\sigma_{xx}\tau_{yz}^2)\\ &=-s_{v}^3+3\sigma_{m}^2s_{v}+2\sigma_{m}^3+(\tau_{xz}^2+\tau_{xy}^2+\tau_{yz}^2-\sigma_{xx}\sigma_{yy}-\sigma_{xx}\sigma_{zz}-\sigma_{yy}\sigma_{zz})(s_{v}+\sigma_{m})\\ &\quad+\sigma_{xx}\sigma_{yy}\sigma_{zz}+2\tau_{xz}\tau_{xy}\tau_{yz}-(\sigma_{yy}\tau_{xz}^2+\sigma_{zz}\tau_{xy}^2+\sigma_{xx}\tau_{yz}^2)\\ &=-s_{v}^3-\sigma_{m}^3+3\sigma_{m}^2s_{v}+3\sigma_{m}^3+I_2(s_{v}+\sigma_{m})+I_3\\ &=-(s_{v}+\sigma_{m})(s_{v}^2-s_{v}\sigma_{m}+\sigma_{m}^2-3\sigma_{m}^2)+I_2(s_{v}+\sigma_{m})+I_3\\ &=-(s_{v}+\sigma_{m})(s_{v}+\sigma_{m})(s_{v}-2\sigma_{m})+I_2(s_{v}+\sigma_{m})+I_3\\ &=-(s_{v}+\sigma_{m})^2(s_{v}+\sigma_{m}-3\sigma_{m})+I_2(s_{v}+\sigma_{m})+I_3\\ &=-(s_{v}+\sigma_{m})^3+3\sigma_{m}(s_{v}+\sigma_{m})^2+I_2(s_{v}+\sigma_{m})+I_3\\ &=-(s_{v}+\sigma_{m})^3+I_1(s_{v}+\sigma_{m})^2+I_2(s_{v}+\sigma_{m})+I_3=0 \end{aligned}\tag{17}
−sv3+I^1sv2+I^2sv+I^3=−sv3+I^2sv+I^3=−sv3+(sxz2+sxy2+syz2−sxxsyy−sxxszz−syyszz)sv+sxxsyyszz+2sxzsxysyz−syysxz2−szzsxy2−sxxsyz2=−sv3+(τxz2+τxy2+τyz2)sv−[(σxx−σm)(σyy−σm)+(σxx−σm)(σzz−σm)+(σyy−σm)(σzz−σm)]sv+(σxx−σm)(σyy−σm)(σzz−σm)+2τxzτxyτyz−(σyy−σm)τxz2−(σzz−σm)τxy2−(σxx−σm)τyz2=−sv3+(τxz2+τxy2+τyz2)sv−(σxxσyy+σxxσzz+σyyσzz)sv+(σxx+σyy+σxx+σzz+σyy+σzz)σmsv−3σm2sv+σxxσyyσzz−(σxxσyy+σxxσzz+σyyσzz)σm+(σxx+σyy+σzz)σm2−σm3+2τxzτxyτyz−(σyyτxz2+σzzτxy2+σxxτyz2)+(τxz2+τxy2+τyz2)σm=−sv3+(τxz2+τxy2+τyz2)(sv+σm)−(σxxσyy+σxxσzz+σyyσzz)(sv+σm)+6σm2sv−3σm2sv+σxxσyyσzz+3σm3−σm3+2τxzτxyτyz−(σyyτxz2+σzzτxy2+σxxτyz2)=−sv3+3σm2sv+2σm3+(τxz2+τxy2+τyz2−σxxσyy−σxxσzz−σyyσzz)(sv+σm)+σxxσyyσzz+2τxzτxyτyz−(σyyτxz2+σzzτxy2+σxxτyz2)=−sv3−σm3+3σm2sv+3σm3+I2(sv+σm)+I3=−(sv+σm)(sv2−svσm+σm2−3σm2)+I2(sv+σm)+I3=−(sv+σm)(sv+σm)(sv−2σm)+I2(sv+σm)+I3=−(sv+σm)2(sv+σm−3σm)+I2(sv+σm)+I3=−(sv+σm)3+3σm(sv+σm)2+I2(sv+σm)+I3=−(sv+σm)3+I1(sv+σm)2+I2(sv+σm)+I3=0(17)
对比公式(17)和公式(10),如下所示。
−
(
s
v
+
σ
m
)
3
+
I
1
(
s
v
+
σ
m
)
2
+
I
2
(
s
v
+
σ
m
)
+
I
3
=
0
−
σ
v
3
+
I
1
σ
v
2
+
I
2
σ
v
+
I
3
=
0
-(s_{v}+\sigma_{m})^3+I_1(s_{v}+\sigma_{m})^2+I_2(s_{v}+\sigma_{m})+I_3=0\\ -\sigma_{v}^3+I_1\sigma_{v}^2+I_2\sigma_{v}+I_3=0
−(sv+σm)3+I1(sv+σm)2+I2(sv+σm)+I3=0−σv3+I1σv2+I2σv+I3=0
不难发现,
s
v
+
σ
m
=
σ
v
s_{v}+\sigma_{m}=\sigma_{v}
sv+σm=σv,即应力偏张量主值和应力张量主值存在以上转换关系。
同时,从公式(16)的
I
^
1
\hat I_1
I^1
I
^
1
=
s
x
x
+
s
y
y
+
s
z
z
=
0
\hat I_1=s_{xx}+s_{yy}+s_{zz}=0
I^1=sxx+syy+szz=0
那么可以得到
(
s
x
x
+
s
y
y
+
s
z
z
)
2
=
s
x
x
2
+
s
y
y
2
+
s
z
z
2
+
2
(
s
x
x
s
y
y
+
s
x
x
s
z
z
+
s
y
y
s
z
z
)
=
0
(18)
(s_{xx}+s_{yy}+s_{zz})^2=s_{xx}^2+s_{yy}^2+s_{zz}^2+2(s_{xx}s_{yy}+s_{xx}s_{zz}+s_{yy}s_{zz})=0\tag{18}
(sxx+syy+szz)2=sxx2+syy2+szz2+2(sxxsyy+sxxszz+syyszz)=0(18)
于是
−
6
(
s
x
x
s
y
y
+
s
x
x
s
z
z
+
s
y
y
s
z
z
)
=
2
s
x
x
2
+
2
s
y
y
2
+
2
s
z
z
2
−
2
(
s
x
x
s
y
y
+
s
x
x
s
z
z
+
s
y
y
s
z
z
)
=
(
s
x
x
−
s
y
y
)
2
+
(
s
x
x
−
s
z
z
)
2
+
(
s
y
y
−
s
z
z
)
2
=
(
σ
x
x
−
σ
y
y
)
2
+
(
σ
x
x
−
σ
z
z
)
2
+
(
σ
y
y
−
σ
z
z
)
2
(19)
\begin{aligned} -6(s_{xx}s_{yy}+s_{xx}s_{zz}+s_{yy}s_{zz})&=2s_{xx}^2+2s_{yy}^2+2s_{zz}^2-2(s_{xx}s_{yy}+s_{xx}s_{zz}+s_{yy}s_{zz})\\ &=(s_{xx}-s_{yy})^2+(s_{xx}-s_{zz})^2+(s_{yy}-s_{zz})^2\\ &=(\sigma_{xx}-\sigma_{yy})^2+(\sigma_{xx}-\sigma_{zz})^2+(\sigma_{yy}-\sigma_{zz})^2 \end{aligned}\tag{19}
−6(sxxsyy+sxxszz+syyszz)=2sxx2+2syy2+2szz2−2(sxxsyy+sxxszz+syyszz)=(sxx−syy)2+(sxx−szz)2+(syy−szz)2=(σxx−σyy)2+(σxx−σzz)2+(σyy−σzz)2(19)
把公式(16)的
I
^
2
\hat I_2
I^2,那么
−
6
(
s
x
x
s
y
y
+
s
x
x
s
z
z
+
s
y
y
s
z
z
)
=
6
[
I
^
2
−
(
τ
x
z
2
+
τ
x
y
2
+
τ
y
z
2
)
]
=
(
σ
x
x
−
σ
y
y
)
2
+
(
σ
x
x
−
σ
z
z
)
2
+
(
σ
y
y
−
σ
z
z
)
2
(20)
\begin{aligned} -6(s_{xx}s_{yy}+s_{xx}s_{zz}+s_{yy}s_{zz})&=6[\hat I_2-(\tau_{xz}^2+\tau_{xy}^2+\tau_{yz}^2)]\\ &=(\sigma_{xx}-\sigma_{yy})^2+(\sigma_{xx}-\sigma_{zz})^2+(\sigma_{yy}-\sigma_{zz})^2 \end{aligned}\tag{20}
−6(sxxsyy+sxxszz+syyszz)=6[I^2−(τxz2+τxy2+τyz2)]=(σxx−σyy)2+(σxx−σzz)2+(σyy−σzz)2(20)
I ^ 2 = 1 6 [ ( σ x x − σ y y ) 2 + ( σ x x − σ z z ) 2 + ( σ y y − σ z z ) 2 + 6 ( τ x z 2 + τ x y 2 + τ y z 2 ) ] (21) \hat I_2=\frac{1}{6}[(\sigma_{xx}-\sigma_{yy})^2+(\sigma_{xx}-\sigma_{zz})^2+(\sigma_{yy}-\sigma_{zz})^2+6(\tau_{xz}^2+\tau_{xy}^2+\tau_{yz}^2)]\tag{21} I^2=61[(σxx−σyy)2+(σxx−σzz)2+(σyy−σzz)2+6(τxz2+τxy2+τyz2)](21)
应力偏张量的第二不变量更常用的还有一个形式如下。
I
^
2
=
1
6
[
(
σ
1
−
σ
2
)
2
+
(
σ
1
−
σ
3
)
2
+
(
σ
2
−
σ
3
)
2
]
(22)
\hat I_2=\frac{1}{6}[(\sigma_{1}-\sigma_{2})^2+(\sigma_{1}-\sigma_{3})^2+(\sigma_{2}-\sigma_{3})^2]\tag{22}
I^2=61[(σ1−σ2)2+(σ1−σ3)2+(σ2−σ3)2](22)
看公式(21)(22)是不是特别的眼熟,其实他就是等效应力的来源,定义应力强度
σ
e
\sigma_e
σe为
σ
e
=
3
I
2
=
1
2
[
(
σ
1
−
σ
2
)
2
+
(
σ
1
−
σ
3
)
2
+
(
σ
2
−
σ
3
)
2
]
=
1
2
[
(
σ
x
x
−
σ
y
y
)
2
+
(
σ
x
x
−
σ
z
z
)
2
+
(
σ
y
y
−
σ
z
z
)
2
+
6
(
τ
x
z
2
+
τ
x
y
2
+
τ
y
z
2
)
]
(22)
\sigma_e=\sqrt{3I_2}=\sqrt{\frac{1}{2}[(\sigma_{1}-\sigma_{2})^2+(\sigma_{1}-\sigma_{3})^2+(\sigma_{2}-\sigma_{3})^2]}\\ =\sqrt{\frac{1}{2}[(\sigma_{xx}-\sigma_{yy})^2+(\sigma_{xx}-\sigma_{zz})^2+(\sigma_{yy}-\sigma_{zz})^2+6(\tau_{xz}^2+\tau_{xy}^2+\tau_{yz}^2)]} \tag{22}
σe=3I2=21[(σ1−σ2)2+(σ1−σ3)2+(σ2−σ3)2]=21[(σxx−σyy)2+(σxx−σzz)2+(σyy−σzz)2+6(τxz2+τxy2+τyz2)](22)