Redis学习笔记(二)

1. 说一说Redis集群的应用和优劣势

参考答案

优势:

Redis Cluster是Redis的分布式解决方案,在3.0版本正式推出,有效地解决了Redis分布式方面的需求。当遇到单机内存、并发、流量等瓶颈时,可以采用Cluster架构方案达到负载均衡的目的。

劣势:

Redis集群方案在扩展了Redis处理能力的同时,也带来了一些使用上的限制:

  1. key批量操作支持有限。如mset、mget,目前只支持具有相同slot值的key执行批量操作。对于映射为不同slot值的key由于执行mset、mget等操作可能存在于多个节点上所以不被支持。

  2. key事务操作支持有限。同理只支持多key在同一节点上的事务操作,当多个key分布在不同的节点上时无法使用事务功能。

  3. key作为数据分区的最小粒度,因此不能将一个大的键值对象(如hash、list等)映射到不同的节点。

  4. 不支持多数据库空间。单机下的Redis可以支持16个数据库,集群模式下只能使用一个数据库空间,即DB0。

  5. 复制结构只支持一层,从节点只能复制主节点,不支持嵌套树状复制结构。

2.说一说hash类型底层的数据结构

参考答案

哈希对象有两种编码方案,当同时满足以下条件时,哈希对象采用ziplist编码,否则采用hashtable编码:

  • 哈希对象保存的键值对数量小于512个;

  • 哈希对象保存的所有键值对中的键和值,其字符串长度都小于64字节。

其中,ziplist编码采用压缩列表作为底层实现,而hashtable编码采用字典作为底层实现。

压缩列表:

压缩列表(ziplist),是Redis为了节约内存而设计的一种线性数据结构,它是由一系列具有特殊编码的连续内存块构成的。一个压缩列表可以包含任意多个节点,每个节点可以保存一个字节数组或一个整数值。

压缩列表的结构如下图所示:

该结构当中的字段含义如下表所示:

属性类型长度说明
zlbytesuint32_t4字节压缩列表占用的内存字节数;
zltailuint32_t4字节压缩列表表尾节点距离列表起始地址的偏移量(单位字节);
zllenuint16_t2字节压缩列表包含的节点数量,等于UINT16_MAX时,需遍历列表计算真实数量;
entryX列表节点不固定压缩列表包含的节点,节点的长度由节点所保存的内容决定;
zlenduint8_t1字节压缩列表的结尾标识,是一个固定值0xFF;

其中,压缩列表的节点由以下字段构成:

previous_entry_length(pel)属性以字节为单位,记录当前节点的前一节点的长度,其自身占据1字节或5字节:

  1. 如果前一节点的长度小于254字节,则“pel”属性的长度为1字节,前一节点的长度就保存在这一个字节内;

  2. 如果前一节点的长度达到254字节,则“pel”属性的长度为5字节,其中第一个字节被设置为0xFE,之后的四个字节用来保存前一节点的长度;

基于“pel”属性,程序便可以通过指针运算,根据当前节点的起始地址计算出前一节点的起始地址,从而实现从表尾向表头的遍历操作。

content属性负责保存节点的值(字节数组或整数),其类型和长度则由encoding属性决定,它们的关系如下:

encoding长度content
00 xxxxxx1字节最大长度为26 -1的字节数组;
01 xxxxxx bbbbbbbb2字节最大长度为214-1的字节数组;
10 __ bbbbbbbb ... ... ...5字节最大长度为232-1的字节数组;
11 0000001字节int16_t类型的整数;
11 0100001字节int32_t类型的整数;
11 1000001字节int64_t类型的整数;
11 1100001字节24位有符号整数;
11 1111101字节8位有符号整数;
11 11xxxx1字节没有content属性,xxxx直接存[0,12]范围的整数值;

字典:

字典(dict)又称为散列表,是一种用来存储键值对的数据结构。C语言没有内置这种数据结构,所以Redis构建了自己的字典实现。

Redis字典的实现主要涉及三个结构体:字典、哈希表、哈希表节点。其中,每个哈希表节点保存一个键值对,每个哈希表由多个哈希表节点构成,而字典则是对哈希表的进一步封装。这三个结构体的关系如下图所示:

其中,dict代表字典,dictht代表哈希表,dictEntry代表哈希表节点。可以看出,dictEntry是一个数组,这很好理解,因为一个哈希表里要包含多个哈希表节点。而dict里包含2个dictht,多出的哈希表用于REHASH。当哈希表保存的键值对数量过多或过少时,需要对哈希表的大小进行扩展或收缩操作,在Redis中,扩展和收缩哈希表是通过REHASH实现的,执行REHASH的大致步骤如下:

  1. 为字典的ht[1]哈希表分配内存空间

    如果执行的是扩展操作,则ht[1]的大小为第1个大于等于ht[0].used*2的2n。如果执行的是收缩操作,则ht[1]的大小为第1个大于等于ht[0].used的2n。

  2. 将存储在ht[0]中的数据迁移到ht[1]上

    重新计算键的哈希值和索引值,然后将键值对放置到ht[1]哈希表的指定位置上。

  3. 将字典的ht[1]哈希表晋升为默认哈希表

    迁移完成后,清空ht[0],再交换ht[0]和ht[1]的值,为下一次REHASH做准备。

当满足以下任何一个条件时,程序会自动开始对哈希表执行扩展操作:

  1. 服务器目前没有执行bgsave或bgrewriteof命令,并且哈希表的负载因子大于等于1;

  2. 服务器目前正在执行bgsave或bgrewriteof命令,并且哈希表的负载因子大于等于5。

为了避免REHASH对服务器性能造成影响,REHASH操作不是一次性地完成的,而是分多次、渐进式地完成的。渐进式REHASH的详细过程如下:

  1. 为ht[1]分配空间,让字典同时持有ht[0]和ht[1]两个哈希表;

  2. 在字典中的索引计数器rehashidx设置为0,表示REHASH操作正式开始;

  3. 在REHASH期间,每次对字典执行添加、删除、修改、查找操作时,程序除了执行指定的操作外,还会顺带将ht[0]中位于rehashidx上的所有键值对迁移到ht[1]中,再将rehashidx的值加1;

  4. 随着字典不断被访问,最终在某个时刻,ht[0]上的所有键值对都被迁移到ht[1]上,此时程序将rehashidx属性值设置为-1,标识REHASH操作完成。

REHSH期间,字典同时持有两个哈希表,此时的访问将按照如下原则处理:

  1. 新添加的键值对,一律被保存到ht[1]中;

  2. 删除、修改、查找等其他操作,会在两个哈希表上进行,即程序先尝试去ht[0]中访问要操作的数据,若不存在则到ht[1]中访问,再对访问到的数据做相应的处理。

3.介绍一下zset类型底层的数据结构

参考答案

有序集合对象有2种编码方案,当同时满足以下条件时,集合对象采用ziplist编码,否则采用skiplist编码:

  • 有序集合保存的元素数量不超过128个;

  • 有序集合保存的所有元素的成员长度都小于64字节。

其中,ziplist编码的有序集合采用压缩列表作为底层实现,skiplist编码的有序集合采用zset结构作为底层实现。

其中,zset是一个复合结构,它的内部采用字典和跳跃表来实现,其源码如下。其中,dict保存了从成员到分支的映射关系,zsl则按分值由小到大保存了所有的集合元素。这样,当按照成员来访问有序集合时可以直接从dict中取值,当按照分值的范围访问有序集合时可以直接从zsl中取值,采用了空间换时间的策略以提高访问效率。

typedef struct zset {     dict *dict;  // 字典,保存了从成员到分值的映射关系;     zskiplist *zsl; // 跳跃表,按分值由小到大保存所有集合元素; } zset;

综上,zset对象的底层数据结构包括:压缩列表、字典、跳跃表。

压缩列表:

压缩列表(ziplist),是Redis为了节约内存而设计的一种线性数据结构,它是由一系列具有特殊编码的连续内存块构成的。一个压缩列表可以包含任意多个节点,每个节点可以保存一个字节数组或一个整数值。

压缩列表的结构如下图所示:

该结构当中的字段含义如下表所示:

属性类型长度说明
zlbytesuint32_t4字节压缩列表占用的内存字节数;
zltailuint32_t4字节压缩列表表尾节点距离列表起始地址的偏移量(单位字节);
zllenuint16_t2字节压缩列表包含的节点数量,等于UINT16_MAX时,需遍历列表计算真实数量;
entryX列表节点不固定压缩列表包含的节点,节点的长度由节点所保存的内容决定;
zlenduint8_t1字节压缩列表的结尾标识,是一个固定值0xFF;

其中,压缩列表的节点由以下字段构成:

previous_entry_length(pel)属性以字节为单位,记录当前节点的前一节点的长度,其自身占据1字节或5字节:

  1. 如果前一节点的长度小于254字节,则“pel”属性的长度为1字节,前一节点的长度就保存在这一个字节内;

  2. 如果前一节点的长度达到254字节,则“pel”属性的长度为5字节,其中第一个字节被设置为0xFE,之后的四个字节用来保存前一节点的长度;

基于“pel”属性,程序便可以通过指针运算,根据当前节点的起始地址计算出前一节点的起始地址,从而实现从表尾向表头的遍历操作。

content属性负责保存节点的值(字节数组或整数),其类型和长度则由encoding属性决定,它们的关系如下:

encoding长度content
00 xxxxxx1字节最大长度为26 -1的字节数组;
01 xxxxxx bbbbbbbb2字节最大长度为214-1的字节数组;
10 __ bbbbbbbb ... ... ...5字节最大长度为232-1的字节数组;
11 0000001字节int16_t类型的整数;
11 0100001字节int32_t类型的整数;
11 1000001字节int64_t类型的整数;
11 1100001字节24位有符号整数;
11 1111101字节8位有符号整数;
11 11xxxx1字节没有content属性,xxxx直接存[0,12]范围的整数值;

字典:

字典(dict)又称为散列表,是一种用来存储键值对的数据结构。C语言没有内置这种数据结构,所以Redis构建了自己的字典实现。

Redis字典的实现主要涉及三个结构体:字典、哈希表、哈希表节点。其中,每个哈希表节点保存一个键值对,每个哈希表由多个哈希表节点构成,而字典则是对哈希表的进一步封装。这三个结构体的关系如下图所示:

其中,dict代表字典,dictht代表哈希表,dictEntry代表哈希表节点。可以看出,dictEntry是一个数组,这很好理解,因为一个哈希表里要包含多个哈希表节点。而dict里包含2个dictht,多出的哈希表用于REHASH。当哈希表保存的键值对数量过多或过少时,需要对哈希表的大小进行扩展或收缩操作,在Redis中,扩展和收缩哈希表是通过REHASH实现的,执行REHASH的大致步骤如下:

  1. 为字典的ht[1]哈希表分配内存空间

    如果执行的是扩展操作,则ht[1]的大小为第1个大于等于ht[0].used*2的2n。如果执行的是收缩操作,则ht[1]的大小为第1个大于等于ht[0].used的2n。

  2. 将存储在ht[0]中的数据迁移到ht[1]上

    重新计算键的哈希值和索引值,然后将键值对放置到ht[1]哈希表的指定位置上。

  3. 将字典的ht[1]哈希表晋升为默认哈希表

    迁移完成后,清空ht[0],再交换ht[0]和ht[1]的值,为下一次REHASH做准备。

当满足以下任何一个条件时,程序会自动开始对哈希表执行扩展操作:

  1. 服务器目前没有执行bgsave或bgrewriteof命令,并且哈希表的负载因子大于等于1;

  2. 服务器目前正在执行bgsave或bgrewriteof命令,并且哈希表的负载因子大于等于5。

为了避免REHASH对服务器性能造成影响,REHASH操作不是一次性地完成的,而是分多次、渐进式地完成的。渐进式REHASH的详细过程如下:

  1. 为ht[1]分配空间,让字典同时持有ht[0]和ht[1]两个哈希表;

  2. 在字典中的索引计数器rehashidx设置为0,表示REHASH操作正式开始;

  3. 在REHASH期间,每次对字典执行添加、删除、修改、查找操作时,程序除了执行指定的操作外,还会顺带将ht[0]中位于rehashidx上的所有键值对迁移到ht[1]中,再将rehashidx的值加1;

  4. 随着字典不断被访问,最终在某个时刻,ht[0]上的所有键值对都被迁移到ht[1]上,此时程序将rehashidx属性值设置为-1,标识REHASH操作完成。

REHSH期间,字典同时持有两个哈希表,此时的访问将按照如下原则处理:

  1. 新添加的键值对,一律被保存到ht[1]中;

  2. 删除、修改、查找等其他操作,会在两个哈希表上进行,即程序先尝试去ht[0]中访问要操作的数据,若不存在则到ht[1]中访问,再对访问到的数据做相应的处理。

跳跃表:

跳跃表的查找复杂度为平均O(logN),最坏O(N),效率堪比红黑树,却远比红黑树实现简单。跳跃表是在链表的基础上,通过增加索引来提高查找效率的。

有序链表插入、删除的复杂度为O(1),而查找的复杂度为O(N)。例:若要查找值为60的元素,需要从第1个元素依次向后比较,共需比较6次才行,如下图:

跳跃表是从有序链表中选取部分节点,组成一个新链表,并以此作为原始链表的一级索引。再从一级索引中选取部分节点,组成一个新链表,并以此作为原始链表的二级索引。以此类推,可以有多级索引,如下图:

跳跃表在查找时,优先从高层开始查找,若next节点值大于目标值,或next指针指向NULL,则从当前节点下降一层继续向后查找,这样便可以提高查找的效率了。

跳跃表的实现主要涉及2个结构体:zskiplist、zskiplistNode,它们的关系如下图所示:

其中,蓝色的表格代表zskiplist,红色的表格代表zskiplistNode。zskiplist有指向头尾节点的指针,以及列表的长度,列表中最高的层级。zskiplistNode的头节点是空的,它不存储任何真实的数据,它拥有最高的层级,但这个层级不记录在zskiplist之内。

4.如何利用Redis实现分布式Session?

参考答案

在web开发中,我们会把用户的登录信息存储在session里。而session是依赖于cookie的,即服务器创建session时会给它分配一个唯一的ID,并且在响应时创建一个cookie用于存储这个SESSIONID。当客户端收到这个cookie之后,就会自动保存这个SESSIONID,并且在下次访问时自动携带这个SESSIONID,届时服务器就可以通过这个SESSIONID得到与之对应的session,从而识别用户的身。如下图:

现在的互联网应用,基本都是采用分布式部署方式,即将应用程序部署在多台服务器上,并通过nginx做统一的请求分发。而服务器与服务器之间是隔离的,它们的session是不共享的,这就存在session同步的问题了,如下图:

如果客户端第一次访问服务器,请求被分发到了服务器A上,则服务器A会为该客户端创建session。如果客户端再次访问服务器,请求被分发到服务器B上,则由于服务器B中没有这个session,所以用户的身份无法得到验证,从而产生了不一致的问题。

解决这个问题的办法有很多,比如可以协调多个服务器,让他们的session保持同步。也可以在分发请求时做绑定处理,即将某一个IP固定分配给同一个服务器。但这些方式都比较麻烦,而且性能上也有一定的消耗。更合理的方式就是采用类似于Redis这样的高性能缓存服务器,来实现分布式session。

从上面的叙述可知,我们使用session保存用户的身份信息,本质上是要做两件事情。第一是保存用户的身份信息,第二是验证用户的身份信息。如果利用其它手段实现这两个目标,那么就可以不用session,或者说我们使用的是广义上的session了。

具体实现的思路如下图,我们在服务端增加两段程序:

第一是创建令牌的程序,就是在用户初次访问服务器时,给它创建一个唯一的身份标识,并且使用cookie封装这个标识再发送给客户端。那么当客户端下次再访问服务器时,就会自动携带这个身份标识了,这和SESSIONID的道理是一样的,只是改由我们自己来实现了。另外,在返回令牌之前,我们需要将它存储起来,以便于后续的验证。而这个令牌是不能保存在服务器本地的,因为其他服务器无法访问它。因此,我们可以将其存储在服务器之外的一个地方,那么Redis便是一个理想的场所。

第二是验证令牌的程序,就是在用户再次访问服务器时,我们获取到了它之前的身份标识,那么我们就要验证一下这个标识是否存在了。验证的过程很简单,我们从Redis中尝试获取一下就可以知道结果。

5. 如何利用Redis实现一个分布式锁?

参考答案

何时需要分布式锁?

在分布式的环境下,当多个server并发修改同一个资源时,为了避免竞争就需要使用分布式锁。那为什么不能使用Java自带的锁呢?因为Java中的锁是面向多线程设计的,它只局限于当前的JRE环境。而多个server实际上是多进程,是不同的JRE环境,所以Java自带的锁机制在这个场景下是无效的。

如何实现分布式锁?

采用Redis实现分布式锁,就是在Redis里存一份代表锁的数据,通常用字符串即可。实现分布式锁的思路,以及优化的过程如下:

  1. 加锁:

    第一版,这种方式的缺点是容易产生死锁,因为客户端有可能忘记解锁,或者解锁失败。

    setnx key value

    第二版,给锁增加了过期时间,避免出现死锁。但这两个命令不是原子的,第二步可能会失败,依然无法避免死锁问题。

    setnx key value expire key seconds

    第三版,通过“set...nx...”命令,将加锁、过期命令编排到一起,它们是原子操作了,可以避免死锁。

    set key value nx ex seconds 
  2. 解锁:

    解锁就是删除代表锁的那份数据。

    del key
  3. 问题:

    看起来已经很完美了,但实际上还有隐患,如下图。进程A在任务没有执行完毕时,锁已经到期被释放了。等进程A的任务执行结束后,它依然会尝试释放锁,因为它的代码逻辑就是任务结束后释放锁。但是,它的锁早已自动释放过了,它此时释放的可能是其他线程的锁。

想要解决这个问题,我们需要解决两件事情:

  1. 在加锁时就要给锁设置一个标识,进程要记住这个标识。当进程解锁的时候,要进行判断,是自己持有的锁才能释放,否则不能释放。可以为key赋一个随机值,来充当进程的标识。

  2. 解锁时要先判断、再释放,这两步需要保证原子性,否则第二步失败的话,就会出现死锁。而获取和删除命令不是原子的,这就需要采用Lua脚本,通过Lua脚本将两个命令编排在一起,而整个Lua脚本的执行是原子的。

按照以上思路,优化后的命令如下:

# 加锁 set key random-value nx ex seconds   # 解锁 if redis.call("get",KEYS[1]) == ARGV[1] then     return redis.call("del",KEYS[1]) else     return 0 end

基于RedLock算法的分布式锁:

上述分布式锁的实现方案,是建立在单个主节点之上的。它的潜在问题如下图所示,如果进程A在主节点上加锁成功,然后这个主节点宕机了,则从节点将会晋升为主节点。若此时进程B在新的主节点上加锁成果,之后原主节点重启,成为了从节点,系统中将同时出现两把锁,这是违背锁的唯一性原则的。

总之,就是在单个主节点的架构上实现分布式锁,是无法保证高可用的。若要保证分布式锁的高可用,则可以采用多个节点的实现方案。这种方案有很多,而Redis的官方给出的建议是采用RedLock算法的实现方案。该算法基于多个Redis节点,它的基本逻辑如下:

  • 这些节点相互独立,不存在主从复制或者集群协调机制;

  • 加锁:以相同的KEY向N个实例加锁,只要超过一半节点成功,则认定加锁成功;

  • 解锁:向所有的实例发送DEL命令,进行解锁;

RedLock算法的示意图如下,我们可以自己实现该算法,也可以直接使用Redisson框架。

6.说一说你对布隆过滤器的理解

参考答案

布隆过滤器可以用很低的代价,估算出数据是否真实存在。例如:给用户推荐新闻时,要去掉重复的新闻,就可以利用布隆过滤器,判断该新闻是否已经推荐过。

布隆过滤器的核心包括两部分:

  1. 一个大型的位数组;

  2. 若干个不一样的哈希函数,每个哈希函数都能将哈希值算的比较均匀。

布隆过滤器的工作原理:

  1. 添加key时,每个哈希函数都利用这个key计算出一个哈希值,再根据哈希值计算一个位置,并将位数组中这个位置的值设置为1。

  2. 询问key时,每个哈希函数都利用这个key计算出一个哈希值,再根据哈希值计算一个位置。然后对比这些哈希函数在位数组中对应位置的数值:

    • 如果这几个位置中,有一个位置的值是0,就说明这个布隆过滤器中,不存在这个key。

    • 如果这几个位置中,所有位置的值都是1,就说明这个布隆过滤器中,极有可能存在这个key。之所以不是百分之百确定,是因为也可能是其他的key运算导致该位置为1。

7.多台Redis抗高并发访问该怎么设计?

参考答案

Redis Cluster是Redis的分布式解决方案,在3.0版本正式推出,有效地解决了Redis分布式方面的需求。当遇到单机内存、并发、流量等瓶颈时,可以采用Cluster架构方案达到负载均衡的目的。

Redis集群采用虚拟槽分区来实现数据分片,它把所有的键根据哈希函数映射到0-16383整数槽内,计算公式为slot=CRC16(key)&16383,每一个节点负责维护一部分槽以及槽所映射的键值数据。虚拟槽分区具有如下特点:

  1. 解耦数据和节点之间的关系,简化了节点扩容和收缩的难度;

  2. 节点自身维护槽的映射关系,不需要客户端或者代理服务维护槽分区元数据;

  3. 支持节点、槽、键之间的映射查询,用于数据路由,在线伸缩等场景。

Redis集群中数据的分片逻辑如下图:

8.如果并发量超过30万,怎么设计Redis架构?

参考答案

Redis Cluster是Redis的分布式解决方案,在3.0版本正式推出,有效地解决了Redis分布式方面的需求。当遇到单机内存、并发、流量等瓶颈时,可以采用Cluster架构方案达到负载均衡的目的。

Redis集群采用虚拟槽分区来实现数据分片,它把所有的键根据哈希函数映射到0-16383整数槽内,计算公式为slot=CRC16(key)&16383,每一个节点负责维护一部分槽以及槽所映射的键值数据。虚拟槽分区具有如下特点:

  1. 解耦数据和节点之间的关系,简化了节点扩容和收缩的难度;

  2. 节点自身维护槽的映射关系,不需要客户端或者代理服务维护槽分区元数据;

  3. 支持节点、槽、键之间的映射查询,用于数据路由,在线伸缩等场景。

Redis集群中数据的分片逻辑如下图:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/258313.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

智能优化算法应用:基于闪电连接过程算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于闪电连接过程算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于闪电连接过程算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.闪电连接过程算法4.实验参数设定…

Idea远程debugger调试

当我们服务部署在服务器上,我们想要像在本地一样debug,就可以使用idea自带的Remote JVM Debug 创建Remote JVM Debug服务器启动jar打断点进入断点 当我们服务部署在服务器上,我们想要像在本地一样debug,就可以使用idea自带的 Remote JVM Debug) 创建Rem…

UE5 水材质注意要点

1、两个法线反向交替流动,可以去观感假的现象 2、水面延边的透明度低 3、增加水面延边的浪花 4、增加折射 折射要整体质量至少在High才有效果 改为半透明材质没有法线信息? 5、处理反射效果 勾选为true 找到这个放在水域 勾为false,即可有非…

FPGA 实现 LeNet-5 卷积神经网络 数字识别,提供工程源码和技术支持

目录 1、前言LeNet-5简洁基于Zynq7020 的设计说明PL 端 FPGA 逻辑设计PS 端 SDK 软件设计免责声明 2、相关方案推荐卷积神经网络解决方案FPGA图像处理方案 3、详细设计方案PL端:ov7725摄像头及图像采集PL端:图像预处理PL端:Xilinx推荐的图像缓…

CentOS:Docker 创建及镜像删除

1、安装docker 远程连接服务器,可以直接下载netsarang比较好用 家庭/学校免费 - NetSarang Website 如果有残留docker未删除干净,请使用 sudo yum -y remove docker docker-common docker-selinux docker-engine Step1:安装必要的一些…

scrapy的入门和使用

scrapy的入门使用 学习目标: 掌握 scrapy的安装应用 创建scrapy的项目应用 创建scrapy爬虫应用 运行scrapy爬虫应用 scrapy定位以及提取数据或属性值的方法掌握 response响应对象的常用属性 1 安装scrapy 命令:     sudo apt-get install scrapy 或者&#x…

警惕!5本剔除!中科院1区TOP,IF8.8,预警高风险期刊更名!

期刊动态:2023年12月SCI、SSCI期刊目录更新 2023年12月19日,科睿唯安更新了WOS期刊目录,继上次11月WOS期刊目录剔除5本SCIE&SSCI期刊之后,此次12月更新又有5本期刊发生变动,其中有4本SCIE期刊被改名,1…

WIN10安装gurobi给matlab使用(记录)

https://www.gurobi.com/downloads/gurobi-software/ 这是以前的matlab路径,需要修改成新的 使用校园网激活一下 运行gurobi_setup Google报错信息,发现mathwork官方的解释是:找不到相关的dll文件,所以mex无效。 解决方案&…

司铭宇老师:电话销售技巧培训之如何提升电话销售技巧

电话销售是一项需要不断学习和提升技能的工作。无论你是刚刚进入这个行业的新手,还是已经有一些经验的销售人员,不断提高自己的电话销售技巧都是非常必要的。在本篇文章中,我将分享一些实用的技巧和案例,帮助大家更好地完成电话销…

重新配置torch1.8 cuda11.1 torchtext0.9.0虚拟Pytorch开发环境

这里写目录标题 起因发现选择安装cuda 11.1核对下自己的显卡是否支持下载该版本的CUDACUDA下载地址CUDA安装过程在anaconda中创建一个虚拟环境1.以下是环境的配置过程2.查看虚拟环境列表3.激活虚拟环境4.输入这句代码,没想到就可以直接安装torch和torchtext了[网站在…

【深度学习】语言模型与注意力机制以及Bert实战指引之一

文章目录 统计语言模型和神经网络语言模型注意力机制和Bert实战Bert-配置环境 统计语言模型和神经网络语言模型 区别:统计语言模型的本质是基于词与词共现频次的统计,而神经网络语言模型则是给每个词赋予了向量空间的位置作为表征,从而计算它…

如何让32位.Net 应用打开3G开关

昨天刚分享了《如何让.NET应用使用更大的内存》&#xff0c;结果就有同学说&#xff0c;<最好加一下32位如何开启大内存&#xff0c;因为很多传统项目32位&#xff0c;实在迁移不动了>&#xff0c;那么&#xff0c;我就验证了一些可行的方案&#xff0c;发现都挺简单的。…

力扣题:子序列-12.28

力扣题-12.28 [力扣刷题攻略] Re&#xff1a;从零开始的力扣刷题生活 力扣题1&#xff1a;521. 最长特殊序列 Ⅰ 解题思想&#xff1a;若两字符串不相同&#xff0c;可以选择较长的字符串作为最长特殊序列&#xff0c;显然它不会是较短的字符串的子序列。 class Solution(ob…

从零开始制作一个Douban图像下载器:Wt库的基础知识和操作指南

引言 欢迎来到本文&#xff0c;如果你希望从豆瓣下载海量的高清图像、学习使用现代C web应用程序框架Wt库开发web应用程序&#xff0c;或者了解如何利用代理IP和多线程技术提高爬虫效率和稳定性&#xff0c;那么你来对地方了。在接下来的内容中&#xff0c;我们将为你提供一个…

vue3 使用<script lang=“ts“ setup>加上lang=“ts“后编译错误

报错信息 报错原因 加上了langts解决 下载typescript和loader npm install typescript ts-loader --save-dev配置vue.config.js 添加下面的代码 configureWebpack: { resolve: { extensions: [".ts", ".tsx", ".js", ".json"] }…

【网络安全】—Shell编程入门(1)

文章目录 基础变量概念介绍特殊变量进阶数值计算实践条件测试比较条件判断语句流程控制语句循环语句应用 Shell 是 Unix/Linux 操作系统下的一种命令行解释器&#xff0c;它接收用户输入的命令然后调用相应的程序。我们可以通过 Shell 脚本来自动执行一系列的命令。接下来&…

uniapp 导入ucharts图表插件 H5项目, 使用echarts eopts配置

先下载ucharts H5示例源码&#xff1a; uCharts: 高性能跨平台图表库&#xff0c;支持H5、APP、小程序&#xff08;微信小程序、支付宝小程序、钉钉小程序、百度小程序、头条小程序、QQ小程序、快手小程序、360小程序&#xff09;、Vue、Taro等更多支持canvas的框架平台&#…

浪潮信息KOS服务器操作系统:经过周密考虑后的智慧之选

文章目录 一、引言二、服务器操作系统概述三、选择服务器操作系统的关键因素四、评估服务器操作系统的标准五、选择服务器操作系统的实践经验六、浪潮信息KOS服务器操作系统一、稳定可靠二、高效协同三、全天候运维四、广泛兼容 七、总结与展望 浪潮信息信息KOS是浪潮信息信息基…

HarmonyOS应用开发实战—开箱即用的应用首页页面【ArkTS】【鸿蒙专栏-34】

一.HarmonyOS应用开发实战—开箱即用的应用首页页面【ArkTS】【鸿蒙专栏-34】 1.1 项目背景 HarmonyOS(鸿蒙操作系统)是华为公司推出的一种分布式操作系统。它被设计为一种全场景、全连接的操作系统,旨在实现在各种设备之间的无缝协同和共享,包括智能手机、平板电脑、智能…

需求:通过按钮的点击事件控制另一个输出框/按钮的点击

目录 第一章 接到需求 第二章 了解需求 第三章 解决需求 第四章 优化代码 第五章 解决问题 第一章 接到需求 最近开发的时候遇到这么一个事&#xff0c;技术经理是个全栈&#xff0c;已经把接口生成了&#xff0c;而且前端页面也写好了一个初稿&#xff0c;操作什么的功…