「数据结构」二叉树1

🎇个人主页:Ice_Sugar_7
🎇所属专栏:C++启航
🎇欢迎点赞收藏加关注哦!

文章目录

  • 🍉树
  • 🍉二叉树
    • 🍌特殊二叉树
    • 🍌二叉树的性质
    • 🍌存储结构
  • 🍉堆
    • 🍌堆的结构
    • 🍌插入
      • 🥝向上调整算法
        • 🫐时间复杂度分析
    • 🍌删除
      • 🥝向下调整算法
        • 🫐时间复杂度分析
    • 🍌堆的创建(堆的初始化)
    • 🍌堆排序
    • 🍌top k 问题
  • 🍉写在最后

🍉树

●树是一种非线性的数据结构,它是由n(n>=0)个结点组成,具有层次关系
●有一个特殊的结点,称为根结点,根节点没有前驱结点
●除根节点外,其余结点被分成M(M>0)个互不相交的集合,每个集合是一棵子树

🍉二叉树

二叉树一个非空结点的子树为空或者至多两个子树(左子树和右子树)
在这里插入图片描述
从这个图可以看出:

二叉树不存在度大于2的结点
二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

🍌特殊二叉树

满二叉树每一层结点数都达到最大值的二叉树。如果一棵满二叉树有k层,那它结点总数就是2^k-1
完全二叉树最后一层抠掉几个结点的满二叉树,就是一般的完全二叉树(满二叉树是特殊的完全二叉树)

🍌二叉树的性质

二叉树的性质都在下图了:
在这里插入图片描述
在这里插入图片描述

🍌存储结构

二叉树一般使用两种结构存储:顺序结构链式结构
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实使用中只有堆才会使用数组来存储
二叉树顺序存储在物理结构上是一个数组,在逻辑结构上是一颗二叉树
我们的代码是按照其物理结构写的,而具体想实现的函数接口则是根据逻辑结构展开的(往下看入堆、出堆、调整等函数之后,你就能理解这句话了)
在这里插入图片描述

本文讲二叉树的顺序存储结构——堆(正文开始)


🍉堆

堆分为两种:大堆和小堆。

大堆:除了叶子结点外,所有结点的孩子都比自己小
小堆:除了叶子结点外,所有结点的孩子都比自己大

根据堆的逻辑结构可知,大堆是上面的结点(位于较低层次的结点)大,小堆是上面的结点小

🍌堆的结构

堆的物理结构就是顺序表,所以代码基本和顺序表一模一样

typedef int HPDataType;
typedef struct Heap
{
	HPDataType* _a;
	int _size;
	int _capacity;
}Heap;

🍌插入

插入这一步很简单,就直接往数组插入元素(注意检查容量是否足够,并且插入后记得让size加1)
插入后,要对这个元素进行调整,采用向上调整

🥝向上调整算法

假设要建一个小堆,那就要拿它和它的双亲进行比较,如果它比双亲小,就和双亲交换位置。假设数组名为_a,大小为size,那插入的结点下标为size-1,它的双亲在数组中的下标就是(size-1-1)/2
这里要用循环,将插入的结点记为child,当child为0时(即它到了堆顶),循环终止。如果中途经比较后发现不用换位置的话,说明调整好了,直接break跳出循环
在这里插入图片描述
代码如下:

typedef int HPDataType;

void Swap(HPDataType* hp1, HPDataType* hp2) {
	HPDataType tmp = *hp1;
	*hp1 = *hp2;
	*hp2 = tmp;
}

//小堆向上调整
void AdjustUp(Heap* hp,int child) {
	assert(hp);
	int parent = (child - 1) / 2;
	while (child > 0) {
		if (hp->_a[child] >= hp->_a[parent]) //孩子比双亲大,退出循环
			break;
		else {
			Swap(&(hp->_a[child]),&(hp->_a[parent]));  //两结点交换
			child = parent;
			parent = (parent - 1) / 2;
		}
	}
}
🫐时间复杂度分析

因为堆是完全二叉树,而满二叉树也是完全二叉树,为了简化问题,就用满二叉树来证明了(时间复杂度本来看的就是近似值,多几个节点不影响最终结果),下面向下调整算法的时间复杂度也这样处理
假设有n个结点,那就有log(n+1)层,那每次向下调整最多遍历log(n+1)次,总共有n个结点,那么就遍历n*log(n+1)次,时间复杂度就是O(N*logN)


🍌删除

不能直接将数组往前挪一位,因为这样虽然在物理结构(数组)上没什么问题,但是在逻辑结构(完全二叉树)上就有问题了,会打乱结点间的关系(比如原先的兄弟现在变为父子,父子变兄弟)
有一个比较巧妙的解决办法,就是将根结点和尾结点(数组最后一个元素)交换位置,然后将新的尾结点删掉,这样就不会影响到结点间的关系了
删掉后要进行向下调整,这就涉及到向下调整算法了

🥝向下调整算法

现在有一个数组,它有n个元素,从逻辑结构上看成是完全二叉树,我们从根结点开始,通过向下调整算法可以把它调整为一个小堆
这种算法的前提是左右子树必须是一个堆,才能调整

int array[] = {27,15,19,18,28,34,65,49,25,37};

调整过程如图:
在这里插入图片描述
每次调整,先比较该结点两个孩子的大小现在要调整为小堆,就先找出较小的孩子,然后这个孩子和双亲进行比较,若孩子<双亲,就把它和双亲交换位置;反之则说明调整完毕

调整的过程显然也要用循环。我们将双亲结点记为parent,左孩子结点记为child(因为左右孩子下标相差1,没必要用leftchild和rightchild进行区分)。那右孩子就是child + 1,不过由于右孩子可能不存在(当child为叶子结点时可能会有这种情况),所以我们得在循环里面判断一下

这里采用假设法,就是我们先假设左孩子是较小的结点(因为右孩子可能不存在,不方便假设),如果右孩子存在的话,就拿左右孩子进行比较,最后将child赋给较小者
(假设法相比于if语句,可以有效简化代码,具体可以看我之前那篇判断相交链表的题解,or看下面的代码也ok)
文章链接:判断相交链表

那循环的终止条件呢?显然当child>=n的时候就要跳出循环了
代码如下:

void AdjustDown(HPDataType* a,int n,int parent) {  //n为数组大小
	assert(a);
	int child = 2 * parent + 1;  //左孩子下标
	while (child < n) {
		if (child + 1 < n && a[child+1] <= a[child]) {  //右结点存在并且右孩子比左孩子小
			child++;  //将child设为右孩子结点,等会儿拿它和双亲进行比较,决定是否交换
		}
		if (a[child] < a[parent]) {
			Swap(&a[child], &a[parent]);
			parent = child;  //更新双亲结点
			child = parent * 2 + 1;  //更新孩子结点
		}
		else
			break;  //不用换位置说明调整完毕
	}
}
🫐时间复杂度分析

在这里插入图片描述
“向下移动”的层数指的是最多要调整几次,即从这个结点开始,一直调整到叶子结点为止(最坏的情况)
从结果可以看出:向下调整的时间复杂度(O(N))比向上调整的小,所以建议使用向下调整


🍌堆的创建(堆的初始化)

建堆既可以建一个空堆,也可以根据一个现成的数组建堆
建空堆就是将数组赋为空指针,然后size和capacity都赋为0。和顺序表初始化一样,不多赘述
这里主要来讲数组建堆
思路是:给堆开辟空间+拷贝+调整
●开空间:数组多大就开多大
●拷贝:使用memcpy将数组的元素拷贝给堆
●调整:向上调整or向下调整

先展示向上调整

void HeapCreate(Heap* hp, HPDataType* a, int n) {
	assert(hp);
	assert(a);
	HPDataType* tmp = (HPDataType*)malloc(sizeof(HPDataType) * n);
	if (tmp == NULL) {
		perror("malloc fail");
		exit(-1);
	}
	hp->_a = tmp;
	hp->_capacity = hp->_size = n;
	memcpy(hp->_a, a, n * sizeof(HPDataType));  //把数组数据拷贝到堆的数组中
	int parent = (hp->_size - 1) / 2;
	for (int i = 1; i < n; i++) {  //  调整建堆
		AdjustUp(hp, i);
	}
}

也可以复用刚才写的入堆函数,因为它自带向上调整函数。而且push函数是将数组的元素一个一个放进堆的,这样就不需要memcpy了,代码如下(为方便观察,我把向上调整函数和入堆函数也放在下面):

//小堆向上调整
void AdjustUp(Heap* hp, int child) {
	assert(hp);
	int parent = (child - 1) / 2;
	while (child > 0) {
		if (hp->_a[child] >= hp->_a[parent]) //孩子比双亲大,退出循环
			break;
		else {
			Swap(hp->_a[child], hp->_a[parent]);  //两结点交换
			child = parent;
			parent = (child - 1) / 2;
		}
	}
}

void HeapPush(Heap* hp, HPDataType x) {
	assert(hp);
	//如果满了  那就要扩容
	if (hp->_capacity == hp->_size) {
		int newcapacity = hp->_capacity == 0 ? 4 : 2 * hp->_capacity;
		HPDataType* tmp = (HPDataType*)realloc(hp->_a, newcapacity * sizeof(HPDataType));
		if (tmp == NULL) {
			perror("realloc fail");
			exit(-1);
		}
		hp->_a = tmp;
		hp->_capacity = newcapacity;
	}
	hp->_a[hp->_size] = x;
	hp->_size++;
	AdjustUp(hp, hp->_size - 1);
}

void HeapCreate(Heap* hp, HPDataType* a, int n) {
	assert(hp);
	HeapInit(hp);  //初始化为空堆
	for (int i = 0; i < n; ++i) {
		HeapPush(hp, a[i]);
	}
}

由于向上调整的效率不及向下调整,所以建议采用向下调整建堆
向下调整要求左子树和右子树也都是堆,又因为单个叶子结点既可以看作是大堆,也可以看成小堆,所以我们从叶子结点的双亲开始向下调整

比如下面这个数组要建一个大堆

int a[] = {4,3,5,7,2,6,8,65,100,70,32,50,60};

在这里插入图片描述
调整后,红色方框内就是一个大堆了,对于3,5这两个结点而言,左右子树都是大堆,那它们也可以向下调整了
代码如下:

void HeapCreate(Heap* hp, HPDataType* a, int n) {
	assert(hp);
	HPDataType* tmp = (HPDataType*)malloc(sizeof(HPDataType) * n);
	if (tmp == NULL) {
		perror("malloc fail");
		exit(-1);
	}
	hp->_a = tmp;
	hp->_capacity = hp->_size = n;
	memcpy(hp->_a, a, n * sizeof(HPDataType));  //把数组数据拷贝到堆的数组中
	int parent = (hp->_size - 1 - 1) / 2;  //最后一个结点的双亲结点
	for (int i = parent; i >= 0;i--) {     //从该结点开始进行向下调整
		AdjustDown(hp->_a, n, i);
	}
}

🍌堆排序

现在有一个数组,要把它排成升序
如果建小堆,那么很容易就可以找到最小的元素。但是要找次小元素的时候,把数组剩下的元素看作完全二叉树的话,它们之间的关系会乱掉

●所以要建大堆,建好后最大的元素就在根结点,将它和最后一个结点交换,就把最大的元素排好了
●然后size-1剔除最大的元素,对于剩下的元素,因为根结点的左右子树也都是大堆,可以采用向下调整,调整后可以把第二大的元素移动到堆顶(根结点),再和最后一个结点交换,第二大元素就排好了
●剩下的元素也如法炮制

void HeapSort(int* a, int k) {  //a为给定数组
	for (int i = (k - 1 - 1) / 2; i >= 0; i--) {   //调整为一个堆
		AdjustDown(a, k, i);
	}

	for (int i = k - 1; i >= 0; i--) {  //采用删除结点的思想,先交换,再调整
		Swap(a[0], a[i]);
		AdjustDown(a, i, 0);
	}
}

排序后得到:
在这里插入图片描述


🍌top k 问题

这个问题就是要找出数组中从大到小(或从小到大)的前k个数,下面以从大到小为例
如果要找从大到小的前k个数,我们可以先从数组中选k个数,建一个大小为k的小堆,然后将数组中剩下的数和堆顶的数进行比较,如果比它大,就替代它,然后向下调整。
这个方法的原理是:放一个比较小的数“卡”在堆顶,类似守门员,比它大的数就能进堆,不断把堆中较小的数踢出去,到最后就留下最大的前k个数

//取最大的前k个
void TopK(HPDataType* pa, int n, int k) {
	Heap ph;
	HeapInit(&ph);
	HeapCreate1(&ph, pa, k);  //建小堆
	for (int i = k; i < n; i++)  //遍历剩下的元素
	{
		if (pa[i] > ph._a[0]) {
			ph._a[0] = pa[i];
			AdjustDown(ph._a, k, 0);  //小堆向下调整
		}
	}
	HeapSort(ph._a, k);  //将得到前k数进行排序
	HeapPrint(&ph);
}

🍉写在最后

以上就是本篇文章的全部内容,如果你觉得本文对你有所帮助的话,那不妨点个小小的赞哦!(比心)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/256132.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【具身智能评估9】Open X-Embodiment: Robotic Learning Datasets and RT-X Models

论文标题&#xff1a;Open X-Embodiment: Robotic Learning Datasets and RT-X Models 论文作者&#xff1a;– 论文原文&#xff1a;https://arxiv.org/abs/2310.08864 论文出处&#xff1a;– 论文被引&#xff1a;–&#xff08;12/18/2023&#xff09; 论文代码&#xff1a…

Antd Select 添加中框

默认antd 的 Select中间并没有竖框&#xff0c;但是ui design设计了&#xff0c;所以记录一下如何添加 默认&#xff1a; CSS&#xff1a; .custom-select-suffix-icon {display: flex;align-items: center; }.custom-select-suffix-icon::before {content: ;height: 31px; …

使用cdn加速导致Vue.js devtools 工具不能使用

打包分析 npm run preview -- --report发现 element-ui mock.js&#xff08;模拟数据&#xff09; cos-js-sdk-v5.js&#xff08;腾讯云上传&#xff09;过大使用cdn加速 2. cdn 加速 webpack排除打包 vue.config.js configureWebpack: {name: name,resolve: {alias: {: reso…

Mybatis-Plus之内置接口(一起了解Mybatis-Plus的内置接口)

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是君易--鑨&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的博客专栏《SpringBoot开发之Mybatis-Plus系列》。&#x1…

Python使用HTTP库发送GET请求的示例——轻松探索网络世界

大家好&#xff0c;今天我要给大家介绍一个非常实用的Python库——HTTP库&#xff0c;它可以帮助我们轻松地发送HTTP请求。今天&#xff0c;我们就来学习一下如何使用HTTP库发送GET请求。 首先&#xff0c;我们需要安装HTTP库。如果你还没有安装&#xff0c;可以通过pip命令进…

补题与总结:AtCoder Beginner Contest 333 D、E

文章目录 写在最前面的复盘D - Erase LeavesE - Takahashi Quest 写在最前面的复盘 前三题属于是凑数题&#xff0c;下次争取快点a掉&#xff0c;这次wa了一次 C题写了个三指针&#xff0c;从小到大枚举出满足题意的数&#xff0c;其实可以直接暴力枚举满足题意的数&#xff0c…

Vue框架入门(项目搭建)

VUE文档 https://cn.vuejs.org/guide/introduction.html SFC名词介绍 SFC即 *.vue 文件&#xff0c;英文 Single-File Component&#xff0c;简称 SFC 每一个 *.vue 文件都由三种顶层语言块构成&#xff1a;<template>、<script> 和 <style> template​ 每个…

【git学习笔记 01】打标签学习

文章目录 一、声明二、对标签的基本认知什么是标签&#xff1f;为什么要打标签&#xff1f;如何生成类似github中readme的图标 三、标签相关命令四、示例操作 一、声明 本帖持续更新中如有纰漏&#xff0c;望批评指正&#xff01;参考视频链接&#xff0c;非常感谢原作者&…

houdini 神经网络

实现个神经网络的3D可视化&#xff0c;美爆了&#xff01;-腾讯云开发者社区-腾讯云 https://vimeo.com/stefsietz GitHub - julrog/nn_vis: A project for processing neural networks and rendering to gain insights on the architecture and parameters of a model throu…

天锐绿盾透明加密防泄密系统的功能有哪些

PC端访问地址&#xff1a;www.drhchina.com 天锐绿盾透明加密防泄密系统的功能主要包括以下几点&#xff1a; 透明加解密&#xff1a;该系统采用文件过滤驱动实现透明加解密&#xff0c;这意味着用户在使用过程中完全感觉不到加密和解密的过程&#xff0c;不会影响用户的操作习…

xcode无线真机调试详细图文步骤

步骤一、 步骤二&#xff1a; 步骤三&#xff1a; 配置完到这里&#xff0c;点击真机右键&#xff0c;菜单栏并未出现connect via ip address 选项&#xff0c;也没出现无线连接的小地球图标&#xff0c;别慌&#xff0c;接着进行下一步操作即可。 步骤四&#xff1a; 1.打开…

单片机计数功能

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、计数器是什么&#xff1f;1.1 应用 二、计数器原理框图及对输入信号的要求2.1 原理框图2.2对输入信号的要求 三、使用步骤3.1 配置为计数模式3.2 装初值3.3…

进制转换(二进制、八进制、十进制、十六进制)

目录 进制转换进制有哪些&#xff1f;二进制八进制&#xff1a;十进制&#xff1a;十六进制&#xff1a; 进制转换 随便记录下&#xff0c;仅供参考。 进制有哪些&#xff1f; 进制一般就只包括&#xff1a;二进制、八进制、十进制 和 十六进制 二进制&#xff1a;逢 二 进…

力扣题:数字与字符串间转换-12.19

力扣题-12.19 [力扣刷题攻略] Re&#xff1a;从零开始的力扣刷题生活 力扣题1&#xff1a;443. 压缩字符串 解题思想&#xff1a;通过双指针进行遍历即可 class Solution(object):def compress(self, chars):""":type chars: List[str]:rtype: int"&quo…

Springboot+Mybatis入门案例

一、项目结构 1.导入依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apach…

Meta与Ray-Ban合作推出了一款全新智能眼镜外观时尚,而且搭载了能够“看到“你所看到的一切的人工智能技术

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

骨传导耳机和开放式耳机有什么区别?一文读懂骨传导耳机和开放式的关系!

先说结论&#xff0c;骨传导耳机和气传导耳机两者都属于是开放式耳机&#xff0c;开放式耳机指的是开放双耳佩戴的耳机&#xff01; 开放式耳机分为两种&#xff0c;分别是骨传导耳机和气传导耳机&#xff0c;虽然两者都属于开放式耳机&#xff0c;但它们的佩戴方式和传声原理…

SpringBoot接入轻量级分布式日志框架GrayLog

1.前言 日志在我们日常开发定位错误&#xff0c;链路错误排查时必不可少&#xff0c;如果我们只有一个服务&#xff0c;我们可以只简单的通过打印的日志文件进行排查定位就可以&#xff0c;但是在分布式服务环境下&#xff0c;多个环境的日志统一收集、展示则成为一个问题。目…

Relocations for this machine are not implemented,IDA版本过低导致生成汇编代码失败

目录 1、问题描述 2、安卓app发生崩溃&#xff0c;需要查看汇编代码上下文去辅助分析 3、使用IDA打开.so动态库文件&#xff0c;提示Relocations for this machine are not implemented 4、IDA版本较老&#xff0c;不支持ARM64的指令集&#xff0c;使用7.0版本就可以了 5、…

ACM32如何保护算法、协议不被破解或者修改

ACM32具有以下几种功能&#xff0c;可以保护算法、协议不被破解或者修改。 1.存储保护  RDP读保护  WRP写保护  PCROP 专有代码读保护  MPU存储区域权限控制  Secure User Memory存储区域加密 2.密码学算法引擎  AES  HASH  随机数生成  …