助力智能人群检测计数,基于YOLOv8开发构建通用场景下人群检测计数识别系统

在一些人流量比较大的场合,或者是一些特殊时刻、时段、节假日等特殊时期下,密切关注当前系统所承载的人流量是十分必要的,对于超出系统负荷容量的情况做到及时预警对于管理团队来说是保障人员安全的重要手段,本文的主要目的是想要基于通用的数据开发构建用于通用场景下的人群检测计数系统。

前文我们基于比较经典的YOLOv3开发实现了检测计数系统,感兴趣的话可以自行移步阅读即可:

《助力智能人群检测计数,基于YOLOv3开发构建通用场景下人群检测计数识别系统》

《助力智能人群检测计数,基于YOLOv5全系列模型【n/s/m/l/x】开发构建通用场景下人群检测计数识别系统》

《助力智能人群检测计数,基于YOLOv6开发构建通用场景下人群检测计数系统》

首先看下实例效果:

简单看下我们从网络源获取的数据集:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型。

分类也提供了对应的预训练模型,如下所示:

Modelsize
(pixels)
acc
top1
acc
top5
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B) at 640
YOLOv8n-cls22466.687.012.90.312.74.3
YOLOv8s-cls22472.391.123.40.356.413.5
YOLOv8m-cls22476.493.285.40.6217.042.7
YOLOv8l-cls22478.094.1163.00.8737.599.7
YOLOv8x-cls22478.494.3232.01.0157.4154.8

分割也提供了对应的预训练模型,如下所示:

Modelsize
(pixels)
mAPbox
50-95
mAPmask
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-seg64036.730.596.11.213.412.6
YOLOv8s-seg64044.636.8155.71.4711.842.6
YOLOv8m-seg64049.940.8317.02.1827.3110.2
YOLOv8l-seg64052.342.6572.42.7946.0220.5
YOLOv8x-seg64053.443.4712.14.0271.8344.1

姿态估计也提供了对应的预训练模型,如下所示:

Modelsize
(pixels)
mAPpose
50-95
mAPpose
50
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-pose64050.480.1131.81.183.39.2
YOLOv8s-pose64060.086.2233.21.4211.630.2
YOLOv8m-pose64065.088.8456.32.0026.481.0
YOLOv8l-pose64067.690.0784.52.5944.4168.6
YOLOv8x-pose64069.290.21607.13.7369.4263.2
YOLOv8x-pose-p6128071.691.24088.710.0499.11066.4

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里我选择的是最为轻量级的n系列的模型,如下所示:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 1  # number of classes
scales: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

等待训练完成后看下结果详情:

【label可视化】

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【混淆矩阵】

【训练过程可视化】

【Batch计算实例】

离线推理实例如下所示:

可以看到:即使是很轻量级的n系列的模型也取得了非常不错的检测效果,感兴趣的话都可以自行尝试下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/255786.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

智能手表上的音频(五):录音

上篇讲了语音通话,本篇讲录音。录音功能就是把录到的音频保存成文件。保存文件的格式支持两种:一是PCM(16K采样)的WAV格式,二是AMR-NB(8k采样)的AMR格式。WAV格式简单:44字节的文件头PCM 数据,示…

关于前端学习的思考-浮动元素嵌套块级元素12.18

1、块级元素嵌套浮动元素 先摆图片,当橘色的盒子高度减少的时候,NK AD TB PK NN并不会减少。如何解决呢? 加一个overflow:clip或者hidden 2、浮动元素嵌套块级元素 加一个overflow:clip或者hidden 综上所述&#xff0…

DC-5靶场

目录 DC-5靶机: 先进行主机发现: 发现文件包含: 上传一句话木马: 反弹shell: 提权漏洞利用: 下载exp: 第一个文件 libhax.c 第二个文件r…

人工智能_机器学习069_SVM支持向量机_网格搜索_交叉验证参数优化_GridSearchCV_找到最优的参数---人工智能工作笔记0109

然后我们再来说一下SVC支持向量机的参数优化,可以看到 这次我们需要,test_data这个是测试数据,容纳后 train_data这个是训练数据 这里首先我们,导出 import numpy as np 导入数学计算包 from sklearn.svm import SVC 导入支持向量机包 分类器包 def read_data(path): wit…

apache shiro 反序列化漏洞解决方案

apache shiro 反序列化漏洞解决方案 反序列化漏洞解决方案产生原因解决方案1:1.升级shiro至最新版本1.7.1解决方案2:修改rememberMe默认密钥,生成随机密钥。 反序列化漏洞解决方案 反序列化漏洞介绍 序列化:把对象转换为字符串或…

弹幕情感分析可视化

弹幕情感分析可视化 引言1. 弹幕数据爬取2. 弹幕数据处理3. 弹幕数据可视化4. 弹幕情感分析5. 创新点:弹幕情感倾向分布 引言 当今互联网时代,大量的弹幕数据蕴含着丰富的信息,通过对这些数据进行分析和可视化,我们能够深入了解用…

promise到底是个什么??

promise是什么? promise是一门新的技术(es6规范) promise是js中进行异步编程的新的解决方案 旧的方案是单纯的使用回调函数 具体的说 promise是构造函数 可以快速构建promise对象 快速获取成功或者失败的值 异步操作有哪些&#xff1…

HackTheBox-Machines--Analytics

文章目录 1 端口扫描2 测试思路3 漏洞探测4 权限获取5 权限提升 Analytics 测试过程 1 端口扫描 nmap -sC -sV 10.129.205.1422 测试思路 目标服务器只开启了80端口,所以出发点从80端口开始。对于web页面,能做的大致思路有: 1.目录扫描   2…

【K8S基础】-k8s的核心概念pod

一、Pod 是什么 1.1 Pod 的定义和概念 在Kubernetes中,Pod是创建或部署的最小/最简单的基本单位。一个Pod代表着集群上正在运行的一个进程,它封装了一个或多个应用容器,并且提供了一些共享资源,如网络和存储,每个Pod…

Java编程与电脑生产力的奇妙故事

标题 《Java编程与电脑生产力的奇妙故事》摘要引言电脑选购的艰难决策决定拿下电脑的那一刻1. 用途和需求2. 硬件规格3. 便携性和设计4. 品牌和可靠性5. 预算 电脑与Java编程的默契数码工具与工作成果的交流1. 开发环境选择2. 代码编辑和调试3. 应用程序部署和运行4. 版本控制和…

Acrel-1000DP分布式光伏系统在某重工企业18MW分布式光伏中应用——安科瑞 顾烊宇

摘 要:分布式光伏发电特指在用户场地附近建设,运行方式以用户侧自发自用、余电上网,且在配电系统平衡调节为特征的光伏发电设施,是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就…

JVM-11-运行时栈帧结构

“栈帧”(Stack Frame)则是用于支持虚拟机进行方法调用和方法执行背后的数据结构,它也是虚拟机运行时数据区中的虚拟机栈(Virtual MachineStack)的栈元素。 栈帧存储了方法的局部变量表、操作数栈、动态连接和方法返回…

【无标题】CTF之SQLMAP

拿这一题来说 抓个包 复制报文 启动我们的sqlmap kali里边 sqlmap -r 文件路径 --dump --dbs 数据库 --tables 表

网络空间搜索引擎- FOFA的使用技巧总结

简介 FOFA是一款网络空间测绘的搜索引擎,旨在帮助用户以搜索的方式查找公网上的互联网资产。 FOFA的查询方式类似于谷歌或百度,用户可以输入关键词来匹配包含该关键词的数据。不同的是,这些数据不仅包括像谷歌或百度一样的网页,还…

2018年第七届数学建模国际赛小美赛B题世界杯足球赛的赛制安排解题全过程文档及程序

2018年第七届数学建模国际赛小美赛 B题 世界杯足球赛的赛制安排 原题再现: 有32支球队参加国际足联世界杯决赛阶段的比赛。但从2026年开始,球队的数量将增加到48支。由于时间有限,一支球队不能打太多比赛。因此,国际足联提议改变…

C语言之递归函数

目录 函数和类型 阶乘 █递归函数调用 函数中可以调用和该函数自身完全相同的函数,这样的调用方式称为递归函数调用,下面我们就来学习相关的基础知识。 函数和类型 所谓递归(recursive),就是将自己包含在内&#x…

Excel只读模式带有密码,怎么办?

打开Excel文件之后发现是只读模式,并且excel只读模式是带有密码的,该如何取消带有密码的excel只读文件呢? 带有密码的只读模式,是设置了excel文件的修改权限,取消修改权限,我们需要先输入密码,…

解决docker alpine /bin/sh: ./main: not found

解决docker alpine /bin/sh: ./main: not found golang中编译之后的二进制文件部署在alpine镜像中出现了not found问题解决这种情况是因为动态链接库位置错误导致的,alpine镜像使用的是musl libc而不是gun libc。因而动态链接库的位置不一致。在基础镜像内执行&…

Kotlin Multiplatform的现状—2023年网络研讨会

Kotlin Multiplatform的现状—2023年网络研讨会 在2023年,Kotlin Multiplatform因其开发、当前状态和未来潜力而受到了相当大的关注。随着越来越多的开发者对采用KMP进行跨平台解决方案表示兴趣,JetBrains在11月下旬推出了一系列网络研讨会作为回应。首…

python使用ctypes访问Windows原生API

在Windows系统中,C语言编写的动态链接库(DLL)是一种可由多个程序同时使用的代码和数据共享库。DLL文件包含了一些可以被其他程序调用的函数和数据。这些DLL文件通常与应用程序一起发布,并在需要时被加载到内存中,以便应…