Convolutional Neural Network(CNN)——卷积神经网络

1.NN的局限性

  • 拓展性差
    • NN的计算量大性能差,不利于在不同规模的数据集上有效运行
    • 若输入维度发生变化,需要修改并重新训练网络
  • 容易过拟合
    • 全连接导致参数量特别多,容易过拟合
    • 如果增加更多层,参数量会翻倍
  • 无法有效利用局部特征
    • 输入数据需要展平成一维,丢弃了图像等数据中的二维结构信息
    • 相邻层完全连接,关注的是全局,没有关注局部区域
  • 不具有平移不变性
    • 信息位置变换时,识别率就大幅降低

2.CNN的优势

• 大大降低过拟合的风险

• 利用数据中的局部结构

        • 局部结构比全局特征具有更好的泛化能力

        • 许多有用信息局限于局部区域

• 提高神经网络的鲁棒性

        • 平移不变性:位置的改变不会改变输出

        CNN常用于图像任务中

3.卷积

3.1 卷积操作

        CNN的核心部分在于卷积操作,其使用卷积过滤器/卷积核(convolution filters/kernels)。通过卷积操作可以实现特征提取。

        卷积操作如何实现?假设有一个5×5输入图像,使用一个3×3的卷积核(具体参数是什么意思会在后面介绍,这里不关键),卷积核参数如图。

        然后卷积核在输入图像上从左上角开始,从左到右,从上到下移动,每次移动一格,如果移动到右边位置不够一个卷积核大小则换行,如果移动到下面位置不够则直接结束,对应位置相乘相加再加上偏置项(可选)便是卷积后的输出

                                                                   

滑动6次后,下面已经不够位置了,卷积结束

        这里给出第一行怎么算出来的

        

        使用不同参数的卷积核可以达到不一样的效果

        同样的在卷积操作后会使用激活函数

        每一个数据点均经过激活函数进行非线性变换

3.2 卷积核

        卷积核包括如下几个参数

  • 卷积核大小:w×h,更大的卷积核会使输出尺寸更加小。常使用的有1×1,3×3,5×5,7×7。
  • 步长stride:卷积核每次滑动多少格。步长可以成倍的减少输出尺寸。
  • 输入通道数in_channels:就是输入数据是多少张叠加的,例如RGB图片就由R,G,B三通道合成的。输入通道为多少,就会使用多少个相同卷积核,分别对各个通道进行卷积,然后对应位置相加合成一个通道输出
  • 输出通道数out_channels:通过卷积可以生成多少个通道特征图,使用多少组卷积核就可以生成多少个输出通道。
  • 填充padding:在四周填充0像素的宽度,可以增大输出的尺寸。同时也可以解决常常丢失边缘像素的问题

        所以在1.的例子中,完整的描述应该是输入图像大小为5×5,通道数为1,设定卷积核大小为3×3,步长为1,输入通道数和输出通道数都为1,填充为0。

——卷积核上的权重参数同样通过训练学习而得,他就是CNN的神经元。

——输入的位置信息嵌入到特征通道中
——在一次卷积中不同位置用的都是同一个卷积核,只是它在移动的,因此输出共享权重,因此
显著减少参数数量
——卷积核每次都会卷积一个局部区域,因此它可以在数据中查找局部结构

——使用多个卷积核,每个卷积核都会专注于输入数据的不同属性,从而生成不同的特征

…………………………………………………………………………………………………………………

几个关于通道数的例子

1.输入通道数为3。设置卷积核大小为3×3,输入通道数为3,输出通道数为1,使用三个卷积核

2.输入通道数为3。设置卷积核大小为3×3,输入通道数为3,输出通道数为4。会使用4组每组3个卷积核。

3.输入通道数为1。设置卷积核大小为3×3,输入通道数为1,输出通道数为3。会使用3组每组1个卷积核。

        将所有这些通道堆叠在一起,我们可以得到一个特征图。

…………………………………………………………………………………………………………………

如何计算输出尺寸

卷积层输出大小 = (输入图像大小 - 卷积核大小 + 2 × 填充数) ÷ 步幅大小 + 1

output = (input - kernel_size + 2padding) / stride + 1

如果输入宽高可以被步幅整除,那么

output = input / stride

4.池化

        池化同样会使用一个核,然后滑动,但这个核不带权重参数。池化层不会改变通道数,常用于减小特征图的尺寸。

其参数如下:

1.卷积核大小

2.步长

3.填充

        输出尺寸计算同卷积操作。当有多个输入通道数,会对每一个输入通道进行池化操作然后合并输出通道只有一个

池化层的作用:

  • 下采样(减少尺寸)减少过多的信息。这也会导致信息丢失
  • 增加额外的非线性变换,减少过拟合
  • 引入平移不变性
  • 关注特征而不是它们的位置,降低对位置的敏感性(通过下面两个操作就知道为什么)。卷积操作对位置很敏感。

1.最大池化(Max pooling)

        取核对应部分的最大值

• 达到特征选择的效果
• 引入额外的非线性映射

2.平均池化(Average pooling)

        取核对应部分的平均值

• 比起最大池化层更好地保留信息

• 减少神经元数量

• 线性操作

• 全局平均池化可以有效抵抗深度CNN中的过拟合。

全局平均池化(GAP)是一种对整个特征图进行操作的池化方法。它的操作步骤如下:

  1. 对于给定的特征图,针对每个通道,计算该通道内所有元素的平均值。
  2. 将每个通道内的平均值作为该通道的汇总特征。
  3. 最终得到一个包含所有通道汇总特征的向量
  4. 全局平均池化通常用作最后一层卷积层之后,用来减少特征图的维度,并生成一个包含每个通道重要特征的向量。这个向量可以输入到全连接层或分类器中,以进行最终的分类或预测任务。

最终得到的汇聚特征向量可以看作是整个特征图的全局信息表示

5.卷积块

        一个基本的卷积块通常由卷积+激活+池化构成

6.卷积神经网络

        卷积神经网络通常包含若干个卷积块用于特征提取,接着使用全局平均池化层生成一个包含每个通道重要特征的向量并通过flatten拉成一维列向量,接着使用一个全连接层,全连接层输出大小一般是分类数目,接着连接一个softmax完成分类任务

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/255465.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

EnvoyFilter API

目录 原文链接 https://onedayxyy.cn/docs/EnvoyFilter-API 本节实战 实战名称🚩 实战:EnvoyFilter API-全局范围-2023.12.18(测试成功)🚩 实战:EnvoyFilter API-配置优先级-2023.12.18(测试成功)🚩 实战&#xff1a…

每日一题:LeetCode-LCR 016. 无重复字符的最长子串

每日一题系列(day 15) 前言: 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 &#x1f50e…

STM32_串口下载程序

目录标题 前言1、理论知识2、串口下载具体操作2.1、硬件准备2.2、软件准备2.3、设置单片机的启动模式为系统存储器启动2.4、软件配置2.5、下载程序 附:生成hex文件 前言 使用调试器下载程序又快有稳定还能使用调试功能,当然是下载调试的首选。但是拓展下串口下载程…

unittest自动化测试框架讲解以及实战

为什么要学习unittest 按照测试阶段来划分,可以将测试分为单元测试、集成测试、系统测试和验收测试。单元测试是指对软件中的最小可测试单元在与程序其他部分相隔离的情况下进行检查和验证的工作,通常指函数或者类,一般是开发完成的。 单元…

【论文阅读笔记】Pre-trained Universal Medical Image Transformer

Luo L, Chen X, Tang B, et al. Pre-trained Universal Medical Image Transformer[J]. arXiv preprint arXiv:2312.07630, 2023.【代码开源】 【论文概述】 本文介绍了一种名为“预训练通用医学图像变换器(Pre-trained Universal Medical Image Transformer&…

浅谈深度学习中的不同归一化层

引言 目前,深度学习已经彻底改变了自然语言处理、计算机视觉、机器人等许多子领域。深度学习当然涉及训练精心设计的深度神经网络,并且各种设计决策会影响这些深度网络的训练机制。其中一些设计决策包括 网络中要使用的网络层类型,例如卷积…

AudioGPT 语音技术全覆盖:语音识别、增强、分离、风格迁移等 | 开源日报 No.114

stevearc/oil.nvim Stars: 1.7k License: MIT oil.nvim 是一个类似于 vim-vinegar 的文件浏览器,允许您像普通 Neovim 缓冲区一样编辑文件系统。其主要功能包括支持常见插件管理器、通过适配器抽象进行所有文件系统交互以及提供 API 来执行各种操作。该项目的关键…

LLM之RAG实战(五)| 高级RAG 01:使用小块检索,小块所属的大块喂给LLM,可以提高RAG性能

RAG(Retrieval Augmented Generation,检索增强生成)系统从给定的知识库中检索相关信息,从而使其能够生成事实信息、上下文相关信息和特定领域的信息。然而,在有效检索相关信息和生成高质量响应方面,RAG面临…

redis:六、数据过期删除策略(惰性删除、定期删除)和基于redisson实现的分布式锁(看门狗机制、主从一致性)和面试模板

数据过期删除策略 Redis的过期删除策略:惰性删除 定期删除两种策略进行配合使用 惰性删除 惰性删除:设置该key过期时间后,我们不去管它,当需要该key时,我们在检查其是否过期,如果过期,我们就…

119. 杨辉三角 II

描述 : 给定一个非负索引 rowIndex,返回「杨辉三角」的第 rowIndex 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和 题目 : LeetCode 119. 杨辉三角 II : 119. 杨辉三角 II 分析 : 这道题用二维数组来做 . 解析 : class Solution {pub…

Jmeter接口测试断言

一、响应断言 对服务器的响应接口进行断言校验,来判断接口测试得到的接口返回值是否正确。 二、添加断言 1、apply to: 通常发出一个请求只触发一个请求,所以勾选“main sampie only”就可以;若发一个请求可以触发多个服务器请…

选择排序、快速排序和插入排序

1. 选择排序 xuanze_sort.c #include<stdio.h> #include<stdlib.h>//选择排序void xuanze_sort(int arr[],int sz){//正着for(int i0;i<sz;i){//外层循环从第一个数据开始依次作为基准数据for(int j i1;j<sz;j){//int j i1 因为第一个数据作为了基准数据&…

如何使用 C++ 开发 Redis 模块

在本文中&#xff0c;我将总结 Tair 在使用 C 开发 Redis 模块时遇到的一些问题&#xff0c;并将其提炼为最佳实践。目的是为 Redis 模块的用户和开发人员提供帮助。其中一些最佳实践也可以应用于 C 编程语言和其他编程语言。 介绍 从 Redis 5.0 开始&#xff0c;支持模块插件…

Unity中URP下的顶点偏移

文章目录 前言一、实现思路二、实现URP下的顶点偏移1、在顶点着色器中使用正弦函数&#xff0c;实现左右摇摆的效果2、在正弦函数的传入参数中&#xff0c;加入一个扰度值&#xff0c;实现不规则的顶点偏移3、修改正弦函数的振幅 A&#xff0c;让我们的偏移程度合适4、修改正弦…

【玩转 TableAgent 数据智能分析】股票交易数据分析+预测

文章目录 一、什么是TableAgent二、TableAgent 的特点三、实践前言四、实践准备4.1 打开官网4.2 注册账号4.3 界面介绍4.4 数据准备 五、确认分析需求六、TableAgent体验七、分析结果解读八、总结&展望 一、什么是TableAgent TableAgent是一款面向企业用户的智能数据分析工…

Redis——多级缓存

JVM进程缓存 为了演示多级缓存&#xff0c;这里先导入一个商品管理的案例&#xff0c;其中包含商品的CRUD功能。将来会给查询商品添加多级缓存。 导入Demo数据 1.安装mysql 后期做数据同步需要用到MySQL的主从功能&#xff0c;所以需要在虚拟机中&#xff0c;利用Docker来运…

C++ Qt 开发:ListWidget列表框组件

Qt 是一个跨平台C图形界面开发库&#xff0c;利用Qt可以快速开发跨平台窗体应用程序&#xff0c;在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置&#xff0c;实现图形化开发极大的方便了开发效率&#xff0c;本章将重点介绍ListWidget列表框组件的常用方法及灵活运用。…

【网络安全】-Linux操作系统基础

文章目录 Linux操作系统目录结构Linux命令格式Linux文件和目录操作命令Linux用户和用户组操作命令Linux查看和操作文件内容命令Linux文件压缩和解压缩命令Linux网络管理命令Linux磁盘管理和系统状态命令Linux安全加固总结 Linux是一个强大的操作系统&#xff0c;广泛用于服务器…

C# WPF上位机开发(进度条操作)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 软件上面如果一个操作比较缓慢&#xff0c;或者说需要很长的时间&#xff0c;那么这个时候最好添加一个进度条&#xff0c;提示一下当前任务的进展…

通过层进行高效学习:探索深度神经网络中的层次稀疏表示

一、介绍 深度学习中的层次稀疏表示是人工智能领域日益重要的研究领域。本文将探讨分层稀疏表示的概念、它们在深度学习中的意义、应用、挑战和未来方向。 最大限度地提高人工智能的效率和性能&#xff1a;深度学习系统中分层稀疏表示的力量。 二、理解层次稀疏表示 分层稀疏表…