pl_vio线特征·part II

pl_vio线特征·part II

    • 0.引言
    • 4.线段残差对位姿的导数
      • 4.1.直线的观测模型和误差
      • 4.2.误差雅克比推导
      • 4.3.误差雅可比求导简洁版(不含imu坐标系转换)
      • 4.4.相关代码

0.引言

  • pl_vio线特征·part I

现在CSDN有字数限制了,被迫拆分为两篇文章。

在这里插入图片描述

4.线段残差对位姿的导数

  • 这一小节理论部分来自这里,当然也是来自原论文。

4.1.直线的观测模型和误差

图2 空间直线投影到像素平面
要想知道线特征的观测模型,我们需要知道线特征从归一化平面到像素平面的投影内参矩阵 K \cal{K} K 。如图2,点 C C C D D D 是直线 L = ( n ⊤ , d ⊤ ) ⊤ \mathcal{L} =(\mathbf{n}^{\top},\mathbf{d}^{\top})^{\top} L=(n,d) 上两点,点 c c c d d d 是它们在像素平面上的投影。 c = K C c = KC c=KC, d = K D d=KD d=KD , K K K是相机的内参矩阵。 n = [ C ] × D , l = [ l 1 l 2 l 3 ] = [ c ] × d \mathbf{n}=[C]_{\times}D ,\mathscr{l} = \left[\begin{matrix}l_1&l_2&l_3\end{matrix}\right]=[c]_{\times}d n=[C]×Dl=[l1l2l3]=[c]×d 。那么有

l = K n = [ f y 0 0 0 f x 0 − f y c x − f x c y f x f y ] n \mathscr{l} = \mathcal{K} \mathbf{n} =\left[ \begin{array}{ccc}{f_{y}} & {0} & {0} \\ {0} & {f_{x}} & {0} \\ {-f_{y} c_{x}} & {-f_{x} c_{y}} & {f_{x} f_{y}}\end{array}\right] \mathbf{n} l=Kn= fy0fycx0fxfxcy00fxfy n

l i = c i × d i = ( K C n ) × ( K D n ) = [ f x X C + c x f y Y C + c y 1 ] × [ f x X D + c x f y Y D + c y 1 ] = [ 0 − 1 ( f y Y C + c y ) 1 0 − ( f x X C + c x ) − ( f y Y C + c y ) ( f x X C + c x ) 0 ] [ f x X D + c x f y Y D + c y 1 ] = [ f y ( Y C − Y D ) f x ( X C − X D ) f x f y ( X C Y D − Y C X D ) + f x c y ( X D − X C ) + f y c x ( Y D − Y C ) ] = [ f y 0 0 0 f x 0 − f y c x − f x c y f x f y ] [ Y D − Y C X D − X C X C Y D − Y C X D ] = [ f y 0 0 0 f x 0 − f y c x − f x c y f x f y ] [ X C Y C 1 ] × [ X D Y D 1 ] = K ( C n × D n ) = K n \begin{aligned}{l}^i = c{^i} \times d{^i} &= (KC{^n}) \times (KD{^n}) \\ &=\begin{bmatrix}fxX_C+cx \\ fyY_C+cy \\ 1\end{bmatrix}_{\times}\begin{bmatrix}fxX_D+cx \\ fyY_D+cy \\ 1\end{bmatrix} \\ &=\begin{bmatrix}0 & -1 & (fyY_C+cy) \\ 1 & 0 & -(fxX_C+cx) \\ -(fyY_C+cy) & (fxX_C+cx) & 0 \end{bmatrix}\begin{bmatrix}fxX_D+cx \\ fyY_D+cy \\ 1\end{bmatrix} \\ &=\begin{bmatrix}fy(Y_C-Y_D) \\ fx(X_C-X_D) \\ fxfy(X_CY_D-Y_CX_D)+fxcy(X_D-X_C)+fycx(Y_D-Y_C) \end{bmatrix} \\ &=\begin{bmatrix}fy & 0 & 0 \\ 0 & fx & 0 \\ -fycx & -fxcy & fxfy \end{bmatrix}\begin{bmatrix}Y_D-Y_C \\ X_D-X_C \\ X_CY_D-Y_CX_D \end{bmatrix} \\ &=\begin{bmatrix}fy & 0 & 0 \\ 0 & fx & 0 \\ -fycx & -fxcy & fxfy \end{bmatrix} \begin{bmatrix}X_C \\ Y_C \\ 1 \end{bmatrix}_{\times} \begin{bmatrix}X_D \\ Y_D \\ 1 \end{bmatrix} \\ &=\mathcal{K}(C{^n} \times D{^n}) \\ &=\mathcal{K} \mathbf{n} \end{aligned} li=ci×di=(KCn)×(KDn)= fxXC+cxfyYC+cy1 × fxXD+cxfyYD+cy1 = 01(fyYC+cy)10(fxXC+cx)(fyYC+cy)(fxXC+cx)0 fxXD+cxfyYD+cy1 = fy(YCYD)fx(XCXD)fxfy(XCYDYCXD)+fxcy(XDXC)+fycx(YDYC) = fy0fycx0fxfxcy00fxfy YDYCXDXCXCYDYCXD = fy0fycx0fxfxcy00fxfy XCYC1 × XDYD1 =K(Cn×Dn)=Kn

上式表明,直线的线投影只和法向量有关和方向向量无关。
在这里插入图片描述

关于投影的误差,我们不可以直接从两幅图像的线段中得到,因为同一条直线在不同图像线段的长度和大小都是不一样的。衡量线的投影误差必须从空间中重投影回当前的图像中才能定义误差。在给定世界坐标系下的空间直线 L l w \mathcal{L}^w_l Llw 和正交表示 O l \mathcal{O}_l Ol ,我们首先使用外参(这也是我们需要优化求解的东西 T c w = [ R c w p c w 0 1 ] T_{cw} = \left[\begin{matrix}R_{cw} & p_{cw}\\0&1 \end{matrix}\right] Tcw=[Rcw0pcw1] 将直线变换到相机归一化平面下的观测 c i c_i ci 坐标下。然后再将直线利用相机内参投影到成像平面上得到投影线段 l l c i \mathscr{l}_l^{c_i} llci ,然后我们就得到了线的投影误差。我们将线的投影误差定义为图像中观测线段的端点到从空间重投影回像素平面的预测直线的距离。

r l ( z L l c i , X ) = [ d ( s l c i , l l c i ) d ( e l c i , l l c i ) ] d ( s , 1 ) = s ⊤ l l 1 2 + l 2 2 \mathbf{r}_{l}\left(\mathbf{z}_{\mathcal{L}_{l}}^{c_{i}}, \mathcal{X}\right)=\left[ \begin{array}{l}{d\left(\mathbf{s}_{l}^{c_{i}}, \mathbf{l}_{l}^{c_{i}}\right)} \\ {d\left(\mathbf{e}_{l}^{c_{i}}, \mathbf{l}_{l}^{c_{i}}\right)}\end{array}\right]\\d(\mathbf{s}, 1)=\frac{\mathbf{s}^{\top} \mathbf{l}}{\sqrt{l_{1}^{2}+l_{2}^{2}}} rl(zLlci,X)=[d(slci,llci)d(elci,llci)]d(s,1)=l12+l22 sl

其中 s l c i \mathbf{s}_l^{c_i} slci e l c i \mathbf{e}_l^{c_i} elci 是图像中观测到的线段端点, l l c i \mathbf{l}_l^{c_i} llci 是重投影的预测的直线。

double FeatureManager::reprojection_error( Vector4d obs, Matrix3d Rwc, Vector3d twc, Vector6d line_w ) {

    double error = 0;

    Vector3d n_w, d_w;
    n_w = line_w.head(3);
    d_w = line_w.tail(3);

    Vector3d p1, p2;
    p1 << obs[0], obs[1], 1;
    p2 << obs[2], obs[3], 1;
	// 根据外参将line从世界坐标系转到相机归一化平面坐标系
    Vector6d line_c = plk_from_pose(line_w,Rwc,twc);
    Vector3d nc = line_c.head(3);
    double sql = nc.head(2).norm();
    nc /= sql;

    error += fabs( nc.dot(p1) );
    error += fabs( nc.dot(p2) );
	
    return error / 2.0;
}

这里误差是归一化平面坐标系的误差,因此观测也应该要求是归一化平面,注意中间有个从像素坐标系到归一化平面坐标系的转换,这里没列出来。

误差求解函数在这里。

这个函数实际上只用在了外点剔除这里,真正的优化误差求解是在优化器那里定义的。而且感觉这里的实现坐标有点问题?

4.2.误差雅克比推导

如果要优化的话,需要知道误差的雅克比矩阵:

线特征在VIO下根据链式求导法则:

J l = ∂ r l ∂ l c i ∂ l c i ∂ L c i [ ∂ L c i ∂ δ x i ∂ L c i ∂ L w ∂ L w ∂ δ O ] \mathbf{J}_{l}=\frac{\partial \mathbf{r}_{l}}{\partial \mathbf{l}^{c_{i}}} \frac{\partial \mathbf{l}^{c_{i}}}{\partial \mathcal{L}^{c_{i}}}\left[\frac{\partial \mathcal{L}^{c_{i}}}{\partial \delta \mathbf{x}^{i}} \quad \frac{\partial \mathcal{L}^{c_{i}}}{\partial \mathcal{L}^{w}} \frac{\partial \mathcal{L}^{w}}{\partial \delta \mathcal{O}}\right] Jl=lcirlLcilci[δxiLciLwLciδOLw]

其中第一项 ∂ r l ∂ l c i \frac{\partial \mathbf{r}_{l}}{\partial \mathbf{l}^{c_{i}}} lcirl ,因为

r l = [ s T l l 1 2 + l 2 2 e T l l 1 2 + l 2 2 ] = [ u s l 1 + v s l 2 l 1 2 + l 2 2 u e l 1 + v e l 2 l 1 2 + l 2 2 ] s = [ u s v s 1 ] e = [ u e v e 1 ] l = [ l 1 l 2 l 3 ] \mathbf{r}_l = \left[ \begin{matrix} \frac{\mathbf{s}^T\mathbf{l} }{\sqrt{l_1^2+l_2^2}} \\ \frac{\mathbf{e}^T\mathbf{l} }{\sqrt{l_1^2+l_2^2}} \end{matrix} \right] = \left[ \begin{matrix} \frac{u_sl_1+v_sl_2 }{\sqrt{l_1^2+l_2^2}} \\ \frac{u_el_1+v_el_2 }{\sqrt{l_1^2+l_2^2}} \end{matrix} \right] \\ \mathbf{s} = \left[\begin{matrix} u_s&v_s&1 \end{matrix} \right] \\ \mathbf{e} = \left[\begin{matrix} u_e&v_e&1 \end{matrix} \right] \\ \mathbf{l} = \left[\begin{matrix} l_1&l_2&l_3 \end{matrix} \right] rl= l12+l22 sTll12+l22 eTl = l12+l22 usl1+vsl2l12+l22 uel1+vel2 s=[usvs1]e=[ueve1]l=[l1l2l3]

所以:

∂ r l ∂ l = [ ∂ r 1 ∂ l 1 ∂ r 1 ∂ l 2 ∂ r 1 ∂ l 3 ∂ r 2 ∂ l 1 ∂ r 2 ∂ l 2 ∂ r 2 ∂ l 3 ] = [ − l 1 s l ⊤ l ( l 1 2 + l 2 2 ) ( 3 2 ) + u s ( l 1 2 + l 2 2 ) ( 1 2 ) − l 2 s l ⊤ l ( l 1 2 + l 2 2 ) ( 3 2 ) + v s ( l 1 2 + l 2 2 ) ( 1 2 ) 1 ( l 1 2 + l 2 2 ) ( 1 2 ) − l 1 e l ⊤ l ( l 1 2 + l 2 2 ) ( 3 2 ) + e s ( l 1 2 + l 2 2 ) ( 1 2 ) − l 2 e l ⊤ l ( l 1 2 + l 2 2 ) ( 3 2 ) + v e ( l 1 2 + l 2 2 ) ( 1 2 ) 1 ( l 1 2 + l 2 2 ) ( 1 2 ) ] 2 × 3 \begin{align} \frac{\partial \mathbf{r}_{l}}{\partial \mathbf{l}} &=\left[ \begin{array}{lll}{\frac{\partial r_{1}}{\partial l_{1}}} & {\frac{\partial r_{1}}{\partial l_{2}}} & {\frac{\partial r_{1}}{\partial l_{3}}} \\ {\frac{\partial r_{2}}{\partial l_{1}}} & {\frac{\partial r_{2}}{\partial l_{2}}} & {\frac{\partial r_{2}}{\partial l_{3}}}\end{array}\right] \\&=\left[\begin{matrix} \frac{-l_{1} \mathbf{s}_{l}^{\top} \mathbf{l}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{3}{2}\right)}}+\frac{u_{s}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{1}{2}\right)}} & \frac{-l_{2} \mathbf{s}_{l}^{\top} \mathbf{l}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{3}{2}\right)}}+\frac{v_{s}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{1}{2}\right)}} & \frac{1}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{1}{2}\right)}} \\ \frac{-l_{1} \mathbf{e}_{l}^{\top} \mathbf{l}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{3}{2}\right)}}+\frac{e_{s}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{1}{2}\right)}} & \frac{-l_{2} \mathbf{e}_{l}^{\top} \mathbf{l}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{3}{2}\right)}}+\frac{v_{e}}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{1}{2}\right)}} & \frac{1}{\left(l_{1}^{2}+l_{2}^{2}\right)^{\left(\frac{1}{2}\right)}} \end{matrix}\right]_{2\times3} \end{align} lrl=[l1r1l1r2l2r1l2r2l3r1l3r2]= (l12+l22)(23)l1sll+(l12+l22)(21)us(l12+l22)(23)l1ell+(l12+l22)(21)es(l12+l22)(23)l2sll+(l12+l22)(21)vs(l12+l22)(23)l2ell+(l12+l22)(21)ve(l12+l22)(21)1(l12+l22)(21)1 2×3

第二项 ∂ l c i ∂ L c i \frac{\partial \mathbf{l}^{c_{i}}}{\partial \mathcal{L}^{c_{i}}} Lcilci(像素坐标到相机归一化坐标,相差一个映射矩阵) ,因为

l = K n L = [ n d ] \mathbf{l} = \mathcal{K}\mathbf{n} \\ \mathcal{L} = \left[\begin{matrix} \mathbf{n} & \mathbf{d}\end{matrix}\right] l=KnL=[nd]

所以:

∂ l c i ∂ L i c i = [ ∂ l n ∂ l d ] = [ K 0 ] 3 × 6 \begin{align} \frac{\partial \mathrm{l}^{c_{i}}}{\partial \mathcal{L}_{i}^{c_{i}}}&=\left[ \begin{matrix} \frac{\partial \mathbf{l}}{\mathbf{n}} &\frac{\partial \mathbf{l}}{\mathbf{d}} \end{matrix} \right] \\&=\left[ \begin{array}{ll}{\mathcal{K}} & {0}\end{array}\right]_{3 \times 6} \end{align} Licilci=[nldl]=[K0]3×6

最后一项矩阵包含两个部分,一个是相机坐标系下线特征对的旋转和平移的误差导数第二个是直线对正交表示的四个参数增量的导数

第一部分中,

δ x i = [ δ p , δ θ , δ v , δ b a b i , δ b g b i ] \delta \mathbf{x}_{i}=\left[\delta \mathbf{p}, \delta \boldsymbol{\theta}, \delta \mathbf{v}, \delta \mathbf{b}_{a}^{b_{i}}, \delta \mathbf{b}_{g}^{b_{i}}\right] δxi=[δp,δθ,δv,δbabi,δbgbi]

在VIO中,如果要计算线特征的重投影误差,需要将在世界坐标系 w w w 下的线特征变换到IMU坐标系 b b b 下,再用外参数 T b c \bf{T}_{bc} Tbc 变换到相机坐标系 c c c 下。所以

L c = T b c − 1 T w b − 1 L w = T b c − 1 [ R w b ⊤ ( n w + [ d w ] × p w b ) R w b ⊤ d w ] 6 × 1 \begin{aligned} \mathcal{L}_{c} &=\mathcal{T}_{b c}^{-1} \mathcal{T}_{w b}^{-1} \mathcal{L}_{w} \\ &=\mathcal{T}_{b c}^{-1}\left[ \begin{matrix} \mathbf{R}_{w b}^{\top}\left(\mathbf{n}^{w}+\left[\mathbf{d}^{w}\right] \times \mathbf{p}_{wb}\right)\\ \mathbf{R}_{wb}^{\top}\mathbf{d}^w \end{matrix} \right]_{6 \times 1} \end{aligned} Lc=Tbc1Twb1Lw=Tbc1[Rwb(nw+[dw]×pwb)Rwbdw]6×1

其中
T b c = [ R b c [ p b c ] × R b c 0 R b c ] T b c − 1 = [ R b c ⊤ − R b c ⊤ [ p b c ] × 0   R b c ⊤ ] \cal{T}_{bc} = \left[ \begin{array}{cc}{\mathbf{R}_{bc}} & {\left[\mathbf{p}_{bc }\right]_{\times} \mathbf{R}_{bc}} \\ {\mathbf{0}} & {\mathbf{R}_{bc}}\end{array}\right]\\ \cal{T}_{bc}^{-1} = \left[\begin{matrix} \bf{R}_{bc}^{\top} &- \bf{R}_{bc}^{\top} [p_{bc}]_{\times} \\0&\ \bf{R}_{bc}^{\top} \end{matrix}\right] Tbc=[Rbc0[pbc]×RbcRbc]Tbc1=[Rbc0Rbc[pbc]× Rbc]
− [ a ] × b = [ b ] × a -[a]_{\times}b=[b]_{\times}a [a]×b=[b]×a
线特征 L \cal{L} L 只优化状态变量中的位移和旋转,所以只需要对位移和旋转求导,其他都是零。下面我们来具体分析旋转和位移的求导。首先是线特征对旋转的求导

∂ L c ∂ δ θ b b ′ = T b c − 1 [ ∂ ( I − [ δ θ b b ′ ] × ) R w b ⊤ ( n w + [ d w ] × p w b ) ∂ δ θ b b ′ ] ∂ ( I − [ δ θ b b ′ ] × ⊤ ) R w b ⊤ d w ∂ δ θ b b ′ ] = T b c − 1 [ [ R w b ⊤ ( n w + [ d w ] × p w b ) ] × ] [ R w b ⊤ d w ] × ] 6 × 3 \begin{align} \frac{\partial \mathcal{L}_{c}}{\partial \delta \theta_{b b^{\prime}}} &=\cal{T}_{bc}^{-1}\left[ \begin{array}{c}{\frac{\partial\left(\mathbf{I}-\left[\delta \boldsymbol{\theta}_{b b^{\prime}}\right]_\times\right) \mathbf{R}_{w b}^{\top}\left(\mathbf{n}^{w}+\left[\mathbf{d}^{w}\right]_\times \mathbf{p}_{w b}\right)}{\partial \delta \boldsymbol{\theta}_{b b^{\prime}}} ]} \\ {\frac{\partial\left(\mathbf{I}-\left[\delta \boldsymbol{\theta}_{b b^{\prime}}\right]_{\times}^{\top}\right) \mathbf{R}_{w b}^{\top} \mathbf{d}^{w}}{\partial \delta \boldsymbol{\theta}_{b b^{\prime}}}}\end{array}\right] \\ &=\mathcal{T}_{b c}^{-1} \left[ \begin{array}{c}{\left[\mathbf{R}_{w b}^{\top}\left(\mathbf{n}^{w}+\left[\mathbf{d}^{w}\right]_\times \mathbf{p}_{w b}\right)\right]_\times ]} \\ {\left[\mathbf{R}_{w b}^{\top} \mathbf{d}^{w}\right]_\times}\end{array}\right]_{6 \times 3} \end{align} δθbbLc=Tbc1 δθbb(I[δθbb]×)Rwb(nw+[dw]×pwb)]δθbb(I[δθbb]×)Rwbdw =Tbc1[[Rwb(nw+[dw]×pwb)]×][Rwbdw]×]6×3

然后是线特征对位移的求导

∂ L c ∂ δ p b b ′ = T b c − 1 [ ∂ R w b ⊤ ( n w + [ d w ] × ( p w b + δ p b b ′ ) ) ∂ δ p b b ′ ∂ R w b ⊤ d w ∂ δ p b b ′ ] = T b c − 1 [ R w b ⊤ [ d w ] × 0 ] 6 × 3 \begin{align} \frac{\partial\cal{L}_c}{\partial\delta \bf{p}_{bb^{\prime}}} &=\mathcal{T}_{b c}^{-1} \left[ \begin{array}{c}{\frac{\partial \mathbf{R}_{w b}^{\top}\left(\mathbf{n}^{w}+\left[\mathbf{d}^{w}\right]_{ \times}\left(\mathbf{p}_{w b}+\delta \mathbf{p}_{b b^{\prime}}\right)\right)}{\partial \delta \mathbf{p}_{b b^{\prime}}}} \\ {\frac{\partial \mathbf{R}_{w b}^{\top} \mathbf{d}^{w}}{\partial \delta \mathbf{p}_{b b^{\prime}}}}\end{array}\right] \\&=\mathcal{T}_{b c}^{-1} \left[ \begin{array}{c}{\mathbf{R}_{w b}^{\top}\left[\mathbf{d}^{w}\right]_{ \times}} \\ {0}\end{array}\right]_{6 \times 3} \end{align} δpbbLc=Tbc1 δpbbRwb(nw+[dw]×(pwb+δpbb))δpbbRwbdw =Tbc1[Rwb[dw]×0]6×3

第二部分中 ∂ L c i ∂ L w ∂ L w ∂ δ O \frac{\partial \mathcal{L}^{c_{i}}}{\partial \mathcal{L}^{w}} \frac{\partial \mathcal{L}^{w}}{\partial \delta \mathcal{O}} LwLciδOLw ,先解释第一个 ∂ L c i ∂ L w \frac{\partial \mathcal{L}^{c_{i}}}{\partial \mathcal{L}^{w}} LwLci

L c = T w c − 1 L w \mathcal{L}^c = \mathcal{T}_{wc}^{-1}\mathcal{L}^w Lc=Twc1Lw

所以 ∂ L c i ∂ L w = T w c − 1 \frac{\partial\cal{L}^{c_i}}{\partial\cal{L}^w} = \mathcal{T}_{wc}^{-1} LwLci=Twc1

然后后面的 ∂ L w ∂ δ O \frac{\partial \mathcal{L}^{w}}{\partial \delta \mathcal{O}} δOLw 有两种思路,先介绍第一种:

∂ L w ∂ δ O = [ ∂ L w ∂ ψ 1 ∂ L w ∂ ψ 2 ∂ L w ∂ ψ 3 ∂ L w ∂ ϕ ] ∂ L w ∂ ψ 1 = ∂ L w ∂ U ∂ U ∂ ψ 1 ∂ L w ∂ ϕ = ∂ L w ∂ w ∂ w ∂ ϕ 1 \frac{\partial \mathcal{L}^{w}}{\partial \delta \mathcal{O}} = \left[\begin{matrix} \frac{\partial\cal{L}^w}{\partial \psi_1} & \frac{\partial\cal{L}^w}{\partial \psi_2} & \frac{\partial\cal{L}^w}{\partial \psi_3} & \frac{\partial\cal{L}^w}{\partial \phi} \end{matrix} \right] \\ \frac{\partial \cal{L}^w}{\partial\psi_1} = \frac{\partial\cal{L}^w}{\partial \bf{U}}\frac{\partial \bf{U}}{\partial\psi_1} \\ \frac{\partial \cal{L}^w}{\partial\phi} = \frac{\partial\cal{L}^w}{\partial \bf{w}}\frac{\partial \bf{w}}{\partial\phi_1} δOLw=[ψ1Lwψ2Lwψ3LwϕLw]ψ1Lw=ULwψ1UϕLw=wLwϕ1w

其中 L \cal{L} L U \bf{U} U w = [ w 1 , w 2 ] \mathbf{w}=[w_1,w_2] w=[w1,w2] 求导,因为 L w = [ w 1 u 1 ⊤ w 2 u 2 ⊤ ] ⊤ \mathcal{L}^w = \left[ \begin{matrix} w_1\bf{u}^{\top}_1&w_2\bf{u}^{\top}_2 \end{matrix}\right]^{\top} Lw=[w1u1w2u2] ,所以

∂ L ∂ U = [ ∂ L ∂ U 1 ∂ L ∂ U 2 ∂ L ∂ U 3 ] 6 × 9 = [ w 1 ( 3 × 3 ) 0 0 0 w 2 ( 3 × 3 ) 0 ] \begin{align} \frac{\partial\cal{L}}{\partial\bf{U}} &= \left[\begin{matrix} \frac{\partial\cal{L}}{\partial\bf{U}_1} & \frac{\partial\cal{L}}{\partial\bf{U}_2} & \frac{\partial\cal{L}}{\partial\bf{U}_3} \end{matrix}\right]_{6\times9} \\ &=\left[\begin{matrix} w_{1(3\times3)}&0&0\\0&w_{2(3\times3)}&0\end{matrix}\right] \end{align} UL=[U1LU2LU3L]6×9=[w1(3×3)00w2(3×3)00]

∂ L ∂ w = [ ∂ L ∂ w 1 ∂ L ∂ w 2 ] 6 × 2 = [ u 1 0 0 u 2 ] \begin{align} \frac{\partial\cal{L}}{\partial\bf{w}} &= \left[\begin{matrix} \frac{\partial\cal{L}}{\partial w_1} & \frac{\partial\cal{L}}{\partial w_2} \end{matrix}\right]_{6\times2} \\ &=\left[\begin{matrix}\bf{u}_1&0 \\0&\bf{u}_2 \end{matrix}\right] \end{align} wL=[w1Lw2L]6×2=[u100u2]

然后是 U \bf{U} U ψ \psi ψ W \bf{W} W ϕ \phi ϕ 的求导,

因为 U ′ ≈ U ( I + [ δ ψ ] × ) \begin{aligned} \mathbf{U}^{\prime} & \approx \mathbf{U}\left(\mathbf{I}+[\delta \psi]_{ \times}\right) \end{aligned} UU(I+[δψ]×) ,所以

[ u 1 u 2 u 3 ] ′ = [ u 1 u 2 u 3 ] + [ u 1 u 2 u 3 ] × δ ψ [ u 1 u 2 u 3 ] ′ − [ u 1 u 2 u 3 ] δ ψ = [ u 1 u 2 u 3 ] × ∂ U ∂ ψ 1 = [ 0 u 3 − u 2 ] ∂ U ∂ ψ 2 = [ − u 3 0 u 1 ] ∂ U ∂ ψ 1 = [ u 2 − u 1 0 ] ∂ w ∂ ϕ = [ − w 2 w 1 ] \left[\begin{matrix} \bf{u}_1&\bf{u}_2 & \bf{u}_3 \end{matrix}\right]^{\prime} = \left[\begin{matrix} \bf{u}_1&\bf{u}_2 & \bf{u}_3 \end{matrix}\right] + \left[\begin{matrix} \bf{u}_1&\bf{u}_2 & \bf{u}_3 \end{matrix}\right]_{\times}\delta\psi \\\frac{ \left[\begin{matrix} \bf{u}_1&\bf{u}_2 & \bf{u}_3 \end{matrix}\right]^{\prime} - \left[\begin{matrix} \bf{u}_1&\bf{u}_2 & \bf{u}_3 \end{matrix}\right]}{\delta\psi} = \left[\begin{matrix} \bf{u}_1&\bf{u}_2 & \bf{u}_3 \end{matrix}\right]_{\times}\\ \frac{\partial\bf{U}}{\partial\psi_1} = \left[\begin{matrix} 0&\bf{u}_3 & -\bf{u}_2 \end{matrix}\right]\\ \frac{\partial\bf{U}}{\partial\psi_2} = \left[\begin{matrix} -\bf{u}_3&0 & \bf{u}_1 \end{matrix}\right]\\ \frac{\partial\bf{U}}{\partial\psi_1} = \left[\begin{matrix} \bf{u}_2 & -\bf{u}_1&0 \end{matrix}\right]\\ \frac{\partial\bf{w}}{\partial\phi} = \left[\begin{matrix} -w_2\\w_1 \end{matrix}\right] [u1u2u3]=[u1u2u3]+[u1u2u3]×δψδψ[u1u2u3][u1u2u3]=[u1u2u3]×ψ1U=[0u3u2]ψ2U=[u30u1]ψ1U=[u2u10]ϕw=[w2w1]

所以,可得

∂ L w ∂ δ O = [ ∂ L w ∂ ψ 1 ∂ L w ∂ ψ 2 ∂ L w ∂ ψ 3 ∂ L w ∂ ϕ ] = [ ∂ L w ∂ U ∂ U ∂ ψ 1 ∂ L w ∂ U ∂ U ∂ ψ 2 ∂ L w ∂ U ∂ U ∂ ψ 3 ∂ L w ∂ w ∂ w ∂ ϕ ] = [ 0 − w 1 u 3 w 1 u 2 − w 2 u 1 w 2 u 3 0 − w 2 u 1 w 1 u 2 ] 6 × 4 \begin{align} \frac{\partial \mathcal{L}^{w}}{\partial \delta \mathcal{O}} &= \left[\begin{matrix} \frac{\partial\cal{L}^w}{\partial \psi_1} & \frac{\partial\cal{L}^w}{\partial \psi_2} & \frac{\partial\cal{L}^w}{\partial \psi_3} & \frac{\partial\cal{L}^w}{\partial \phi} \end{matrix} \right] \\ &= \left[\begin{matrix} \frac{\partial\cal{L}^w}{\partial\bf{U}}\frac{\partial\bf{U}}{\partial \psi_1} & \frac{\partial\cal{L}^w}{\partial\bf{U}}\frac{\partial\bf{U}}{\partial \psi_2} & \frac{\partial\cal{L}^w}{\partial\bf{U}}\frac{\partial\bf{U}}{\partial \psi_3} & \frac{\partial\cal{L}^w}{\partial \bf{w}}\frac{\partial \bf{w}}{\partial \phi} \end{matrix} \right] \\ &=\left[\begin{matrix}0&-w_1\bf{u}_3&w_1\bf{u}_2&-w_2\bf{u}_1\\w_2\bf{u}_3 &0&-w_2\bf{u}_1&w_1\bf{u}_2 \end{matrix} \right]_{6\times4} \end{align} δOLw=[ψ1Lwψ2Lwψ3LwϕLw]=[ULwψ1UULwψ2UULwψ3UwLwϕw]=[0w2u3w1u30w1u2w2u1w2u1w1u2]6×4


4.3.误差雅可比求导简洁版(不含imu坐标系转换)

  • L W L^W LW表示在世界坐标系的表示, L C L^{C} LC表示在相机坐标系下的表示;
  • L n L^n Ln表示归一化平面上的线, L I L^I LI表示在图像坐标系下的线;

图中的 I L I_L IL表示直线 L \mathcal{L} L在图像平面的投影,所以定义误差项为(就是简单的两个点到直线的距离):

r L = [ r 1 r 2 ] = [ c T I l 1 2 + l 2 2 d T I l 1 2 + l 2 2 ] (15) \mathbf{r_L}=\begin{bmatrix}\mathbf{r_1} \\ \mathbf{r_2} \end{bmatrix} = \begin{bmatrix}\frac{c^TI}{\sqrt{l_1^2+l_2^2}} \\ \frac{d^TI}{\sqrt{l_1^2+l_2^2}} \end{bmatrix} \tag{15} rL=[r1r2]= l12+l22 cTIl12+l22 dTI (15)

求解Jacobian
跟对3D点的优化问题一样,就是从误差不停的递推到位姿以及直线表示上,用到最最最基本的求导的链式法则:

通用的公式如下:

∂ r L ∂ X = ∂ r L ∂ L I ∂ L I ∂ L n ∂ L n ∂ L c { ∂ L c ∂ θ  X= θ ∂ L c ∂ t  X=t ∂ L c ∂ L w ∂ L w ∂ ( θ , ϕ )  X= L w (16) \frac{\partial \mathbf{r_L}}{\partial X}= \frac{\partial \mathbf{r_L}}{\partial L^{I}} \frac{\partial L^{I}}{\partial L^{n}} \frac{\partial L^{n}}{\partial L^{c}} \begin{aligned} \begin{cases} \frac{\partial L^{c}}{\partial \theta} &\text{ X=}\theta \\ \frac{\partial L^{c}}{\partial t} &\text{ X=t} \\ \frac{\partial L^{c}}{\partial L^{w}}\frac{\partial L^{w}}{\partial{(\theta,\phi)}} &\text{ X=}L^{w} \end{cases} \end{aligned}\tag{16} XrL=LIrLLnLILcLn θLctLcLwLc(θ,ϕ)Lw X=θ X=t X=Lw(16)

先对前面最通用的部分进行求解:

第一部分:

∂ r L ∂ L I = [ ∂ r 1 ∂ l 1 ∂ r 1 ∂ l 2 ∂ r 1 ∂ l 3 ∂ r 2 ∂ l 1 ∂ r 2 ∂ l 2 ∂ r 2 ∂ l 3 ] = [ − l 1 c T L I ( l 1 2 + l 2 2 ) 3 2 + u c ( l 1 2 + l 2 2 ) 1 2 − l 2 c T L I ( l 1 2 + l 2 2 ) 3 2 + v c ( l 1 2 + l 2 2 ) 1 2 1 ( l 1 2 + l 2 2 ) 1 2 − l 1 d T L I ( l 1 2 + l 2 2 ) 3 2 + u d ( l 1 2 + l 2 2 ) 1 2 − l 2 d T L I ( l 1 2 + l 2 2 ) 3 2 + v d ( l 1 2 + l 2 2 ) 1 2 1 ( l 1 2 + l 2 2 ) 1 2 ] 2 × 3 (17) \begin{aligned} \frac{\partial \mathbf{r_L}}{\partial L^{I}} &= \begin{bmatrix}\frac{\partial{\mathbf{r1}}}{\partial{l_1}} & \frac{\partial{\mathbf{r1}}}{\partial{l_2}} & \frac{\partial{\mathbf{r1}}}{\partial{l_3}} \\ \frac{\partial{\mathbf{r2}}}{\partial{l_1}} & \frac{\partial{\mathbf{r2}}}{\partial{l_2}} & \frac{\partial{\mathbf{r2}}}{\partial{l_3}}\end{bmatrix} \\ &=\begin{bmatrix}\frac{-l_1 c^TL^{I}}{(l_1^2+l_2^2)^{\frac{3}{2}}}+\frac{u_c}{(l_1^2+l_2^2)^{\frac{1}{2}}} & \frac{-l_2 c^TL^{I}}{(l_1^2+l_2^2)^{\frac{3}{2}}}+\frac{v_c}{(l_1^2+l_2^2)^{\frac{1}{2}}} & \frac{1}{(l_1^2+l_2^2)^{\frac{1}{2}}} \\ \frac{-l_1 d^TL^{I}}{(l_1^2+l_2^2)^{\frac{3}{2}}}+\frac{u_d}{(l_1^2+l_2^2)^{\frac{1}{2}}} & \frac{-l_2 d^TL^{I}}{(l_1^2+l_2^2)^{\frac{3}{2}}}+\frac{v_d}{(l_1^2+l_2^2)^{\frac{1}{2}}} & \frac{1}{(l_1^2+l_2^2)^{\frac{1}{2}}} \end{bmatrix}_{2\times 3} \end{aligned} \tag{17} LIrL=[l1r1l1r2l2r1l2r2l3r1l3r2]= (l12+l22)23l1cTLI+(l12+l22)21uc(l12+l22)23l1dTLI+(l12+l22)21ud(l12+l22)23l2cTLI+(l12+l22)21vc(l12+l22)23l2dTLI+(l12+l22)21vd(l12+l22)211(l12+l22)211 2×3(17)

其中:

l 1 , l 2 , l 3 l1, l2, l3 l1,l2,l3表示图像坐标系下直线的三个参数;
u c , v c u_c, v_c uc,vc表示点 c c c x y xy xy坐标值, u d , v d u_d, v_d ud,vd同理;
第二部分:

根据公式(13)可知:

∂ L I ∂ L n = K 3 × 3 (18) \frac{\partial L^{I}}{\partial L^{n}}=\mathcal{K}_{3\times3} \tag{18} LnLI=K3×3(18)

第三部分:

由公式(6)和(13)可知,直线的Plucker表示在归一化平面上只用了其中的法向量部分,因此若有 L c = [ n c , d c ] T \mathcal{L{^c}}=\left[\mathbf{n{^c}}, \mathbf{d{^c}}\right]^T Lc=[nc,dc]T,那么 L n = n c \mathcal{L{^n}}=\mathbf{n{^c}} Ln=nc,所以求导有:

∂ L n ∂ L c = [ I 3 × 3 0 3 × 3 ] 3 × 6 (19) \frac{\partial L^{n}}{\partial L^{c}}=\begin{bmatrix}\mathbf{I}_{3\times3} & 0_{3\times3}\end{bmatrix}_{3\times6} \tag{19} LcLn=[I3×303×3]3×6(19)

第四部分就分这几种情况进行讨论:

对于位姿的姿态部分
根据公式(7)有:

∂ L c ∂ θ = [ ∂ n c ∂ θ ∂ d c ∂ θ ] = [ ∂ ( R w c T ( n w + [ t w c ] × b w ) ) ∂ θ ∂ R w c T b w ∂ θ ] = [ [ R w c T ( n w + [ t w c ] × b w ) ] × [ R w c T b w ] × ] 6 × 3 (20) \frac{\partial L{^c}}{\partial \theta} = \begin{bmatrix}\frac{\partial n_c}{\partial \theta} \\ \frac{\partial d_c}{\partial \theta}\end{bmatrix} = \begin{bmatrix}\frac{\partial{(R_{wc}^T(n_w+[t_{wc}]_{\times}b_w))}}{\partial \theta} \\ \frac{\partial{R_{wc}^Tb_w}}{\partial \theta}\end{bmatrix}=\begin{bmatrix} [R_{wc}^T(n_w+[t_{wc}]_{\times}b_w)]_{\times} \\ [R_{wc}^Tb_w]_{\times} \end{bmatrix}_{6\times3} \tag{20} θLc=[θncθdc]=[θ(RwcT(nw+[twc]×bw))θRwcTbw]=[[RwcT(nw+[twc]×bw)]×[RwcTbw]×]6×3(20)

上述的推导使用了李群的右扰动模型,即 ( R w c E x p ( θ ) ) T = E x p ( − θ ) R w c T (R_{wc}Exp(\theta))^T=Exp(-\theta)R_{wc}^T (RwcExp(θ))T=Exp(θ)RwcT

对于位姿的位移部分
同样根据公式(7)有:

∂ L c ∂ t = [ ∂ n c ∂ t ∂ d c ∂ t ] = [ ∂ ( R w c T ( n w + [ t w c ] × b w ) ) ∂ t ∂ R w c T b w ∂ t ] = [ − R w c T [ b w ] × 0 ] 6 × 3 (21) \frac{\partial L{^c}}{\partial t} = \begin{bmatrix}\frac{\partial n_c}{\partial t} \\ \frac{\partial d_c}{\partial t}\end{bmatrix} = \begin{bmatrix}\frac{\partial{(R_{wc}^T(n_w+[t_{wc}]_{\times}b_w))}}{\partial t} \\ \frac{\partial{R_{wc}^Tb_w}}{\partial t}\end{bmatrix}=\begin{bmatrix} -R_{wc}^T[b_{w}]_{\times} \\ \mathbf{0} \end{bmatrix}_{6\times3} \tag{21} tLc=[tnctdc]=[t(RwcT(nw+[twc]×bw))tRwcTbw]=[RwcT[bw]×0]6×3(21)

对于世界坐标系下直线表示部分
这部分按照公式(16)的步骤,依旧分两个部分:

∂ L c ∂ L w \frac{\partial L^{c}}{\partial L^{w}} LwLc部分:
∂ L c ∂ L w = [ ∂ n C ∂ n W ∂ n C ∂ b W ∂ d C ∂ n W ∂ d C ∂ b W ] = [ R w c T R w c T [ t w c ] × 0 R w c T ] (22) \frac{\partial L^{c}}{\partial L^{w}}= \begin{bmatrix} \frac{\partial{\mathbf{n^C}}}{\partial{\mathbf{n^W}}} & \frac{\partial{\mathbf{n^C}}}{\partial{\mathbf{b^W}}} \\ \frac{\partial{\mathbf{d^C}}}{\partial{\mathbf{n^W}}} & \frac{\partial{\mathbf{d^C}}}{\partial{\mathbf{b^W}}} \end{bmatrix} = \left[\begin{array}{cc} \mathrm{R}_{wc}^{T} & {\mathrm{R}_{wc}^{T}\left[\mathbf{t}_{wc}\right]_{\times} } \\ \mathbf{0} & \mathrm{R}_{wc}^T \end{array}\right] \tag{22} LwLc=[nWnCnWdCbWnCbWdC]=[RwcT0RwcT[twc]×RwcT](22)
∂ L w ∂ ( θ , ϕ ) \frac{\partial L^{w}}{\partial(\theta, \phi)} (θ,ϕ)Lw部分,这部分其实还可以继续分,如下:
∂ L w ∂ ( θ , ϕ ) = [ ∂ L w ∂ θ , ∂ L w ∂ ϕ ] = [ ∂ L w ∂ U ∂ U ∂ θ , ∂ L w ∂ W ∂ W ∂ ϕ ] \frac{\partial L^{w}}{\partial(\theta, \phi)}= \left[\frac{\partial L^{w}}{\partial \theta}, \frac{\partial L^{w}}{\partial \phi}\right]= \left[\frac{\partial L^{w}}{\partial{U}}\frac{\partial{U}}{\partial \theta}, \frac{\partial L^{w}}{\partial{W}}\frac{\partial{W}}{\partial \phi}\right] (θ,ϕ)Lw=[θLw,ϕLw]=[ULwθU,WLwϕW]第一部分
∂ L w ∂ U ∂ U ∂ θ = ∂ [ w 1 u 1 w 2 u 2 ] ∂ [ u 1 , u 2 , u 3 ] ∂ [ u 1 , u 2 , u 3 ] ∂ θ = [ w 1 0 0 0 w 2 0 ] 6 × 9 [ 0 − u 3 u 2 u 3 0 − u 1 − u 2 u 1 0 ] 9 × 3 = [ 0 − w 1 u 3 w 1 u 2 − w 2 u 3 0 − w 2 u 1 ] 6 × 3 (23) \begin{aligned} \frac{\partial L^{w}}{\partial{U}}\frac{\partial{U}}{\partial \theta}&=\frac{\partial{\begin{bmatrix} w1\mathbf{u_1} \\ w2\mathbf{u_2} \end{bmatrix}}}{\partial{[\mathbf{u_1},\mathbf{u_2}, \mathbf{u_3}]}}\frac{\partial{[\mathbf{u_1},\mathbf{u_2}, \mathbf{u_3}]}}{\partial{\theta}} \\ &=\begin{bmatrix}w1 & 0 & 0 \\ 0 & w2 & 0 \end{bmatrix}_{6\times9} \begin{bmatrix}0 & -\mathbf{u3} & \mathbf{u2} \\ \mathbf{u3} & 0 & -\mathbf{u1} \\ -\mathbf{u2} & \mathbf{u1} & 0 \end{bmatrix}_{9\times3} \\ &= \begin{bmatrix} 0 & -w1\mathbf{u3} & w1\mathbf{u2} \\ -w2\mathbf{u3} & 0 & -w2\mathbf{u1} \end{bmatrix}_{6\times3} \end{aligned} \tag{23} ULwθU=[u1,u2,u3][w1u1w2u2]θ[u1,u2,u3]=[w100w200]6×9 0u3u2u30u1u2u10 9×3=[0w2u3w1u30w1u2w2u1]6×3(23) 第二部分
∂ L w ∂ W ∂ W ∂ ϕ = ∂ [ w 1 u 1 w 2 u 2 ] ∂ [ w 1 , w 2 ] T ∂ [ w 1 , w 2 ] T ∂ ϕ = [ u 1 0 0 u 2 ] 6 × 2 [ − w 2 w 1 ] 2 × 1 = [ − w 2 u 1 w 1 u 2 ] 6 × 1 (24) \begin{aligned} \frac{\partial L^{w}}{\partial{W}}\frac{\partial{W}}{\partial \phi}&=\frac{\partial{\begin{bmatrix} w1\mathbf{u_1} \\ w2\mathbf{u_2} \end{bmatrix}}}{\partial{[w1, w2]^T}}\frac{\partial{[w1, w2]^T}}{\partial{\phi}} \\ &=\begin{bmatrix}\mathbf{u1} & 0 \\ 0 & \mathbf{u2} \end{bmatrix}_{6\times2} \begin{bmatrix} -w2 \\ w1 \end{bmatrix}_{2\times1} \\ &= \begin{bmatrix} -w2\mathbf{u1} \\ w1\mathbf{u2}\end{bmatrix}_{6\times1} \end{aligned} \tag{24} WLwϕW=[w1,w2]T[w1u1w2u2]ϕ[w1,w2]T=[u100u2]6×2[w2w1]2×1=[w2u1w1u2]6×1(24) 其中 w 1 = c o s ( ϕ ) , w 2 = s i n ( ϕ ) w1=cos(\phi), w2=sin(\phi) w1=cos(ϕ),w2=sin(ϕ)
两个部分合起来为:
∂ L w ∂ ( θ , ϕ ) = [ R w c T R w c T [ t w c ] × 0 R w c T ] 6 × 6 [ 0 − w 1 u 3 w 1 u 2 − w 2 u 1 − w 2 u 3 0 − w 2 u 1 w 1 u 2 ] 6 × 4 (25) \frac{\partial L^{w}}{\partial(\theta, \phi)}= \left[\begin{array}{cc} \mathrm{R}_{wc}^{T} & {\mathrm{R}_{wc}^{T}\left[\mathbf{t}_{wc}\right]_{\times} } \\ \mathbf{0} & \mathrm{R}_{wc}^T \end{array}\right]_{6\times6} \begin{bmatrix} 0 & -w1\mathbf{u3} & w1\mathbf{u2} & -w2\mathbf{u1} \\ -w2\mathbf{u3} & 0 & -w2\mathbf{u1} & w1\mathbf{u2} \end{bmatrix}_{6\times4} \tag{25} (θ,ϕ)Lw=[RwcT0RwcT[twc]×RwcT]6×6[0w2u3w1u30w1u2w2u1w2u1w1u2]6×4(25)

最后就是上述推导过程中确实有很多地方向量的notation没有统一,可能有些比较容易混淆,这里确实是因为各个论文的表示不太一样,导致写公式的时候不太一样,自己又偷了个懒,不过该注释的地方都进行了注释。目前比较流行的表示应该是 L = [ n , d ] T L=[\mathbf{n}, \mathbf{d}]^T L=[n,d]T 或者 L = [ n , v ] T L=[\mathbf{n}, \mathbf{v}]^T L=[n,v]T ,其中 n \mathbf{n} n 表示法向量, d \mathbf{d} d 或者 v \mathbf{v} v 表示方向向量。


4.4.相关代码

优化入口,ceres,主要实现在这里。

  • todo:导数填充

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/251936.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

盛最多水的容器

给定一个长度为 n 的整数列表 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。返回容器可以储存的最大水量。 说明&#xff1a;你不能倾斜容器。 示例1&…

ARM I2C通信

1.概念 I2C总线是PHLIPS公司在八十年代初推出的一种串行的半双工同步总线&#xff0c;主要用于连接整体电路2.IIC总线硬件连接 1.IIC总线支持多主机多从机&#xff0c;但是在实际开发过程中&#xff0c;大多数采用单主机多从机模式 2.挂接到IIC总线上&#xff0c;每个从机设备都…

一键批量改名,将西班牙语文件轻松转换为中文!

你是否曾经遇到过需要将大量西班牙语文件批量转换为中文文件的问题&#xff1f;这可能会让你感到头疼和繁琐。但是&#xff0c;现在有了我们的批量改名工具&#xff0c;你可以轻松解决这个问题&#xff01; 首先&#xff0c;进入文件批量改名高手的主页面&#xff0c;并在板块…

dockerfile,Docker镜像的创建

dockerfile&#xff1a;创建镜像&#xff0c;创建自定义的镜像。包括配置文件&#xff0c;挂载点&#xff0c;对外暴露的端口。设置环境变量。 docker的创建镜像的方式&#xff1a; 1、基于已有镜像进行创建。根据官方提供的镜像源&#xff0c;创建镜像&#xff0c;然后拉起容…

一问掌握SpringBoot常见注解,后无压力。

文章目录 一、&#x1f50e; SpringBoot常用注解大全&#x1f341;&#x1f341; 01. RequestMapping 注解&#x1f341; 1.1. RequestMapping 是什么&#xff1f;&#x1f341; 1.2. RequestMapping 特点有哪些&#xff1f;&#x1f341; 1.3. RequestMapping 作用是什么&…

GZ015 机器人系统集成应用技术样题6-学生赛

2023年全国职业院校技能大赛 高职组“机器人系统集成应用技术”赛项 竞赛任务书&#xff08;学生赛&#xff09; 样题6 选手须知&#xff1a; 本任务书共 25页&#xff0c;如出现任务书缺页、字迹不清等问题&#xff0c;请及时向裁判示意&#xff0c;并进行任务书的更换。参赛队…

【C++11特性篇】一文助小白轻松理解 C++中的【左值&左值引用】【右值&右值引用】

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.【左值&#xff06;左值引用】&…

josef约瑟 时间继电器 DS-23/C AC220V 10S柜内板前接线

系列型号&#xff1a; DS-21时间继电器 &#xff1b;DS-22时间继电器&#xff1b; DS-23时间继电器&#xff1b;DS-24时间继电器&#xff1b; DS-21C时间继电器&#xff1b;DS-22C时间继电器&#xff1b; DS-23C时间继电器&#xff1b; DS-25时间继电器&#xff1b;DS-26…

C语言实现Hoare版快速排序(递归版)

Hoare版 快速排序是由Hoare发明的&#xff0c;所以我们先来讲创始人的想法。我们直接切入主题&#xff0c;Hoare版快速排序的思想是将一个值设定为key&#xff0c;这个值不一定是第一个&#xff0c;如果你选其它的值作为你的key&#xff0c;那么你的思路也就要转换一下&#xf…

Gradle 之初体验

文章目录 1.安装1&#xff09;检查 JDK2&#xff09;下载 Gradle3&#xff09;解压 Gradle4&#xff09;环境变量5&#xff09;验证安装 2.优势总结 Gradle 是一款强大而灵活的构建工具&#xff0c;用于自动化构建、测试和部署项目。它支持多语言、多项目和多阶段的构建&#x…

MySQL数据库 DCL

目录 DCL概述 管理用户 权限控制 DCL概述 DCL英文全称是Data Control Language(数据控制语言)&#xff0c;用来管理数据库用户、控制数据库的访 问权限。 管理用户 (1) 查询用户 select * from mysql.user; 查询的结果如下: 其中 Host代表当前用户访问的主机, 如果为localh…

探索AI在CRM中的潜力:智能化客户关系的构建

AI人工智能在CRM系统中的应用有&#xff1a;赋能内容生产、客户服务支持、赋能品牌推广、自动化业务流程、数据分析、辅助科学决策、给出最佳客户联系时间。合理运用CRM系统中AI人工智能助手可以让团队工作事半功倍。 1.内容生产 市场营销活动离不开内容生产&#xff0c;持续…

跟iPhone类似,不同品牌的手机、电脑随时使用“隔空投送”功能!如何开启?

iPhone的隔空投送是一个很受欢迎的功能。打开一个 App&#xff0c;然后轻点“共享”或“共享”按钮&#xff0c;再点击隔空投送&#xff0c;就可以分享图片、视频、文件出去。 然而&#xff0c;如果你用的不是苹果的产品&#xff0c;iPhone的隔空投送功能就有了“隔阂”。 不过…

黑马点评06分布式锁 2Redisson

实战篇-17.分布式锁-Redisson功能介绍_哔哩哔哩_bilibili 1.还存在的问题 直接实现很麻烦&#xff0c;借鉴已有的框架。 2.Redisson用法 3.Redisson可重入原理 在获取锁的时候&#xff0c;看看申请的线程和拿锁的线程是否一致&#xff0c;然后计算该线程获取锁的次数。一个方法…

2044回文字符串(C语言)

目录 一&#xff1a;题目 二&#xff1a;思路分析 1.什么是回文&#xff1f; 2.判断回文&#xff1a; 三&#xff1a;代码 一&#xff1a;题目 二&#xff1a;思路分析 1.什么是回文&#xff1f; 最简单的理解方式就是一个字符串正着写和倒着写一样 2.判断回文&#xff1…

001 Windows虚拟机

一、虚拟机安装Windows10 选自定义安装 升级是针对你电脑上有系统的情况下&#xff0c;你要升级&#xff1b;没有系统就选择自定义。 硬盘60G 直接单击下一步就是一个盘 如果你想对磁盘进行分区 分第一个区的时候它会去创建系统的保留分区和系统分区&#xff0c;然后还剩20…

Codeforces Round 915 (Div. 2)

Constructive Problems&#xff08;Problem - A - Codeforces&#xff09; 题目大意&#xff1a;现在有一片城市被摧毁了&#xff0c;需要进行重建&#xff0c;当一个城市水平相邻和竖直相邻的位置都至少有一个城市的时候&#xff0c;该城市可以被重建。所有城市排成n行m列的矩…

sourcetree使用详解

介绍 SourceTree 是 Windows 和Mac OS X 下免费的 Git 和 Hg 客户端管理工具&#xff0c;同时也是Mn版本控制系统工具。支持创建、克隆、提交、push、pull 和合并等操作。——百度百科 是一款比较好用的图形化GUI的git、hg管理工具。还有一些其他的可视化代码管理工具&#x…

Pycharm 如何更改成中文版| Python循环语句| for 和 else 的搭配使用

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

ASP.NET MVC权限管理系实战之一验证码功能实现

1&#xff0c;权限的管理系统&#xff1a;开发项目必备的一个的功能&#xff1b;该项目使用 ASP.NET MVC5 SqlServer EF6 IOC容器 BoostStrap 2&#xff0c;登录界面验证码功能实现&#xff0c;整体效果如下&#xff1b; 3&#xff0c;接下来就是代码部分实现&#xff0c;前端…