【深度学习】注意力机制(六)

本文介绍一些注意力机制的实现,包括MobileVITv1/MobileVITv2/DAT/CrossFormer/MOA。

【深度学习】注意力机制(一)

【深度学习】注意力机制(二)

【深度学习】注意力机制(三)

【深度学习】注意力机制(四)

【深度学习】注意力机制(五)

目录

一、MobileVITv1

二、MobileVITv2

三、DAT(Deformable Attention Transformer)

四、CrossFormer

五、MOA(multi-resolution overlapped attention)


一、MobileVITv1

论文地址:https://arxiv.org/pdf/2110.02178v2.pdf

如下图:

该代码块不能直接使用,有相关依赖,可以参考(代码来源):

import math
from typing import Dict, Optional, Sequence, Tuple, Union

import numpy as np
import torch
from torch import Tensor, nn
from torch.nn import functional as F

from cvnets.layers import ConvLayer2d, get_normalization_layer
from cvnets.modules.base_module import BaseModule
from cvnets.modules.transformer import LinearAttnFFN, TransformerEncoder


class MobileViTBlock(BaseModule):
    """
    This class defines the `MobileViT block <https://arxiv.org/abs/2110.02178?context=cs.LG>`_

    Args:
        opts: command line arguments
        in_channels (int): :math:`C_{in}` from an expected input of size :math:`(N, C_{in}, H, W)`
        transformer_dim (int): Input dimension to the transformer unit
        ffn_dim (int): Dimension of the FFN block
        n_transformer_blocks (Optional[int]): Number of transformer blocks. Default: 2
        head_dim (Optional[int]): Head dimension in the multi-head attention. Default: 32
        attn_dropout (Optional[float]): Dropout in multi-head attention. Default: 0.0
        dropout (Optional[float]): Dropout rate. Default: 0.0
        ffn_dropout (Optional[float]): Dropout between FFN layers in transformer. Default: 0.0
        patch_h (Optional[int]): Patch height for unfolding operation. Default: 8
        patch_w (Optional[int]): Patch width for unfolding operation. Default: 8
        transformer_norm_layer (Optional[str]): Normalization layer in the transformer block. Default: layer_norm
        conv_ksize (Optional[int]): Kernel size to learn local representations in MobileViT block. Default: 3
        dilation (Optional[int]): Dilation rate in convolutions. Default: 1
        no_fusion (Optional[bool]): Do not combine the input and output feature maps. Default: False
    """

    def __init__(
        self,
        opts,
        in_channels: int,
        transformer_dim: int,
        ffn_dim: int,
        n_transformer_blocks: Optional[int] = 2,
        head_dim: Optional[int] = 32,
        attn_dropout: Optional[float] = 0.0,
        dropout: Optional[int] = 0.0,
        ffn_dropout: Optional[int] = 0.0,
        patch_h: Optional[int] = 8,
        patch_w: Optional[int] = 8,
        transformer_norm_layer: Optional[str] = "layer_norm",
        conv_ksize: Optional[int] = 3,
        dilation: Optional[int] = 1,
        no_fusion: Optional[bool] = False,
        *args,
        **kwargs
    ) -> None:
        conv_3x3_in = ConvLayer2d(
            opts=opts,
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=conv_ksize,
            stride=1,
            use_norm=True,
            use_act=True,
            dilation=dilation,
        )
        conv_1x1_in = ConvLayer2d(
            opts=opts,
            in_channels=in_channels,
            out_channels=transformer_dim,
            kernel_size=1,
            stride=1,
            use_norm=False,
            use_act=False,
        )

        conv_1x1_out = ConvLayer2d(
            opts=opts,
            in_channels=transformer_dim,
            out_channels=in_channels,
            kernel_size=1,
            stride=1,
            use_norm=True,
            use_act=True,
        )
        conv_3x3_out = None
        if not no_fusion:
            conv_3x3_out = ConvLayer2d(
                opts=opts,
                in_channels=2 * in_channels,
                out_channels=in_channels,
                kernel_size=conv_ksize,
                stride=1,
                use_norm=True,
                use_act=True,
            )
        super().__init__()
        self.local_rep = nn.Sequential()
        self.local_rep.add_module(name="conv_3x3", module=conv_3x3_in)
        self.local_rep.add_module(name="conv_1x1", module=conv_1x1_in)

        assert transformer_dim % head_dim == 0
        num_heads = transformer_dim // head_dim

        global_rep = [
            TransformerEncoder(
                opts=opts,
                embed_dim=transformer_dim,
                ffn_latent_dim=ffn_dim,
                num_heads=num_heads,
                attn_dropout=attn_dropout,
                dropout=dropout,
                ffn_dropout=ffn_dropout,
                transformer_norm_layer=transformer_norm_layer,
            )
            for _ in range(n_transformer_blocks)
        ]
        global_rep.append(
            get_normalization_layer(
                opts=opts,
                norm_type=transformer_norm_layer,
                num_features=transformer_dim,
            )
        )
        self.global_rep = nn.Sequential(*global_rep)

        self.conv_proj = conv_1x1_out

        self.fusion = conv_3x3_out

        self.patch_h = patch_h
        self.patch_w = patch_w
        self.patch_area = self.patch_w * self.patch_h

        self.cnn_in_dim = in_channels
        self.cnn_out_dim = transformer_dim
        self.n_heads = num_heads
        self.ffn_dim = ffn_dim
        self.dropout = dropout
        self.attn_dropout = attn_dropout
        self.ffn_dropout = ffn_dropout
        self.dilation = dilation
        self.n_blocks = n_transformer_blocks
        self.conv_ksize = conv_ksize


    def unfolding(self, feature_map: Tensor) -> Tuple[Tensor, Dict]:
        patch_w, patch_h = self.patch_w, self.patch_h
        patch_area = int(patch_w * patch_h)
        batch_size, in_channels, orig_h, orig_w = feature_map.shape

        new_h = int(math.ceil(orig_h / self.patch_h) * self.patch_h)
        new_w = int(math.ceil(orig_w / self.patch_w) * self.patch_w)

        interpolate = False
        if new_w != orig_w or new_h != orig_h:
            # Note: Padding can be done, but then it needs to be handled in attention function.
            feature_map = F.interpolate(
                feature_map, size=(new_h, new_w), mode="bilinear", align_corners=False
            )
            interpolate = True

        # number of patches along width and height
        num_patch_w = new_w // patch_w  # n_w
        num_patch_h = new_h // patch_h  # n_h
        num_patches = num_patch_h * num_patch_w  # N

        # [B, C, H, W] --> [B * C * n_h, p_h, n_w, p_w]
        reshaped_fm = feature_map.reshape(
            batch_size * in_channels * num_patch_h, patch_h, num_patch_w, patch_w
        )
        # [B * C * n_h, p_h, n_w, p_w] --> [B * C * n_h, n_w, p_h, p_w]
        transposed_fm = reshaped_fm.transpose(1, 2)
        # [B * C * n_h, n_w, p_h, p_w] --> [B, C, N, P] where P = p_h * p_w and N = n_h * n_w
        reshaped_fm = transposed_fm.reshape(
            batch_size, in_channels, num_patches, patch_area
        )
        # [B, C, N, P] --> [B, P, N, C]
        transposed_fm = reshaped_fm.transpose(1, 3)
        # [B, P, N, C] --> [BP, N, C]
        patches = transposed_fm.reshape(batch_size * patch_area, num_patches, -1)

        info_dict = {
            "orig_size": (orig_h, orig_w),
            "batch_size": batch_size,
            "interpolate": interpolate,
            "total_patches": num_patches,
            "num_patches_w": num_patch_w,
            "num_patches_h": num_patch_h,
        }

        return patches, info_dict

    def folding(self, patches: Tensor, info_dict: Dict) -> Tensor:
        n_dim = patches.dim()
        assert n_dim == 3, "Tensor should be of shape BPxNxC. Got: {}".format(
            patches.shape
        )
        # [BP, N, C] --> [B, P, N, C]
        patches = patches.contiguous().view(
            info_dict["batch_size"], self.patch_area, info_dict["total_patches"], -1
        )

        batch_size, pixels, num_patches, channels = patches.size()
        num_patch_h = info_dict["num_patches_h"]
        num_patch_w = info_dict["num_patches_w"]

        # [B, P, N, C] --> [B, C, N, P]
        patches = patches.transpose(1, 3)

        # [B, C, N, P] --> [B*C*n_h, n_w, p_h, p_w]
        feature_map = patches.reshape(
            batch_size * channels * num_patch_h, num_patch_w, self.patch_h, self.patch_w
        )
        # [B*C*n_h, n_w, p_h, p_w] --> [B*C*n_h, p_h, n_w, p_w]
        feature_map = feature_map.transpose(1, 2)
        # [B*C*n_h, p_h, n_w, p_w] --> [B, C, H, W]
        feature_map = feature_map.reshape(
            batch_size, channels, num_patch_h * self.patch_h, num_patch_w * self.patch_w
        )
        if info_dict["interpolate"]:
            feature_map = F.interpolate(
                feature_map,
                size=info_dict["orig_size"],
                mode="bilinear",
                align_corners=False,
            )
        return feature_map

    def forward_spatial(self, x: Tensor) -> Tensor:
        res = x

        fm = self.local_rep(x)

        # convert feature map to patches
        patches, info_dict = self.unfolding(fm)

        # learn global representations
        for transformer_layer in self.global_rep:
            patches = transformer_layer(patches)

        # [B x Patch x Patches x C] --> [B x C x Patches x Patch]
        fm = self.folding(patches=patches, info_dict=info_dict)

        fm = self.conv_proj(fm)

        if self.fusion is not None:
            fm = self.fusion(torch.cat((res, fm), dim=1))
        return fm

    def forward_temporal(
        self, x: Tensor, x_prev: Optional[Tensor] = None
    ) -> Union[Tensor, Tuple[Tensor, Tensor]]:

        res = x
        fm = self.local_rep(x)

        # convert feature map to patches
        patches, info_dict = self.unfolding(fm)

        # learn global representations
        for global_layer in self.global_rep:
            if isinstance(global_layer, TransformerEncoder):
                patches = global_layer(x=patches, x_prev=x_prev)
            else:
                patches = global_layer(patches)

        # [B x Patch x Patches x C] --> [B x C x Patches x Patch]
        fm = self.folding(patches=patches, info_dict=info_dict)

        fm = self.conv_proj(fm)

        if self.fusion is not None:
            fm = self.fusion(torch.cat((res, fm), dim=1))
        return fm, patches

    def forward(
        self, x: Union[Tensor, Tuple[Tensor]], *args, **kwargs
    ) -> Union[Tensor, Tuple[Tensor, Tensor]]:
        if isinstance(x, Tuple) and len(x) == 2:
            # for spatio-temporal MobileViT
            return self.forward_temporal(x=x[0], x_prev=x[1])
        elif isinstance(x, Tensor):
            # For image data
            return self.forward_spatial(x)
        else:
            raise NotImplementedError

二、MobileVITv2

论文地址:Separable Self-attention for Mobile Vision Transformers

如下图:

代码不可直接使用,可参考代码来源:

class MobileViTBlockv2(BaseModule):
    """
    This class defines the `MobileViTv2 <https://arxiv.org/abs/2206.02680>`_ block

    Args:
        opts: command line arguments
        in_channels (int): :math:`C_{in}` from an expected input of size :math:`(N, C_{in}, H, W)`
        attn_unit_dim (int): Input dimension to the attention unit
        ffn_multiplier (int): Expand the input dimensions by this factor in FFN. Default is 2.
        n_attn_blocks (Optional[int]): Number of attention units. Default: 2
        attn_dropout (Optional[float]): Dropout in multi-head attention. Default: 0.0
        dropout (Optional[float]): Dropout rate. Default: 0.0
        ffn_dropout (Optional[float]): Dropout between FFN layers in transformer. Default: 0.0
        patch_h (Optional[int]): Patch height for unfolding operation. Default: 8
        patch_w (Optional[int]): Patch width for unfolding operation. Default: 8
        conv_ksize (Optional[int]): Kernel size to learn local representations in MobileViT block. Default: 3
        dilation (Optional[int]): Dilation rate in convolutions. Default: 1
        attn_norm_layer (Optional[str]): Normalization layer in the attention block. Default: layer_norm_2d
    """

    def __init__(
        self,
        opts,
        in_channels: int,
        attn_unit_dim: int,
        ffn_multiplier: Optional[Union[Sequence[Union[int, float]], int, float]] = 2.0,
        n_attn_blocks: Optional[int] = 2,
        attn_dropout: Optional[float] = 0.0,
        dropout: Optional[float] = 0.0,
        ffn_dropout: Optional[float] = 0.0,
        patch_h: Optional[int] = 8,
        patch_w: Optional[int] = 8,
        conv_ksize: Optional[int] = 3,
        dilation: Optional[int] = 1,
        attn_norm_layer: Optional[str] = "layer_norm_2d",
        *args,
        **kwargs
    ) -> None:
        cnn_out_dim = attn_unit_dim

        conv_3x3_in = ConvLayer2d(
            opts=opts,
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=conv_ksize,
            stride=1,
            use_norm=True,
            use_act=True,
            dilation=dilation,
            groups=in_channels,
        )
        conv_1x1_in = ConvLayer2d(
            opts=opts,
            in_channels=in_channels,
            out_channels=cnn_out_dim,
            kernel_size=1,
            stride=1,
            use_norm=False,
            use_act=False,
        )

        super(MobileViTBlockv2, self).__init__()
        self.local_rep = nn.Sequential(conv_3x3_in, conv_1x1_in)

        self.global_rep, attn_unit_dim = self._build_attn_layer(
            opts=opts,
            d_model=attn_unit_dim,
            ffn_mult=ffn_multiplier,
            n_layers=n_attn_blocks,
            attn_dropout=attn_dropout,
            dropout=dropout,
            ffn_dropout=ffn_dropout,
            attn_norm_layer=attn_norm_layer,
        )

        self.conv_proj = ConvLayer2d(
            opts=opts,
            in_channels=cnn_out_dim,
            out_channels=in_channels,
            kernel_size=1,
            stride=1,
            use_norm=True,
            use_act=False,
        )

        self.patch_h = patch_h
        self.patch_w = patch_w
        self.patch_area = self.patch_w * self.patch_h

        self.cnn_in_dim = in_channels
        self.cnn_out_dim = cnn_out_dim
        self.transformer_in_dim = attn_unit_dim
        self.dropout = dropout
        self.attn_dropout = attn_dropout
        self.ffn_dropout = ffn_dropout
        self.n_blocks = n_attn_blocks
        self.conv_ksize = conv_ksize
        self.enable_coreml_compatible_fn = getattr(
            opts, "common.enable_coreml_compatible_module", False
        )

        if self.enable_coreml_compatible_fn:
            # we set persistent to false so that these weights are not part of model's state_dict
            self.register_buffer(
                name="unfolding_weights",
                tensor=self._compute_unfolding_weights(),
                persistent=False,
            )

    def _compute_unfolding_weights(self) -> Tensor:
        # [P_h * P_w, P_h * P_w]
        weights = torch.eye(self.patch_h * self.patch_w, dtype=torch.float)
        # [P_h * P_w, P_h * P_w] --> [P_h * P_w, 1, P_h, P_w]
        weights = weights.reshape(
            (self.patch_h * self.patch_w, 1, self.patch_h, self.patch_w)
        )
        # [P_h * P_w, 1, P_h, P_w] --> [P_h * P_w * C, 1, P_h, P_w]
        weights = weights.repeat(self.cnn_out_dim, 1, 1, 1)
        return weights

    def _build_attn_layer(
        self,
        opts,
        d_model: int,
        ffn_mult: Union[Sequence, int, float],
        n_layers: int,
        attn_dropout: float,
        dropout: float,
        ffn_dropout: float,
        attn_norm_layer: str,
        *args,
        **kwargs
    ) -> Tuple[nn.Module, int]:

        if isinstance(ffn_mult, Sequence) and len(ffn_mult) == 2:
            ffn_dims = (
                np.linspace(ffn_mult[0], ffn_mult[1], n_layers, dtype=float) * d_model
            )
        elif isinstance(ffn_mult, Sequence) and len(ffn_mult) == 1:
            ffn_dims = [ffn_mult[0] * d_model] * n_layers
        elif isinstance(ffn_mult, (int, float)):
            ffn_dims = [ffn_mult * d_model] * n_layers
        else:
            raise NotImplementedError

        # ensure that dims are multiple of 16
        ffn_dims = [int((d // 16) * 16) for d in ffn_dims]

        global_rep = [
            LinearAttnFFN(
                opts=opts,
                embed_dim=d_model,
                ffn_latent_dim=ffn_dims[block_idx],
                attn_dropout=attn_dropout,
                dropout=dropout,
                ffn_dropout=ffn_dropout,
                norm_layer=attn_norm_layer,
            )
            for block_idx in range(n_layers)
        ]
        global_rep.append(
            get_normalization_layer(
                opts=opts, norm_type=attn_norm_layer, num_features=d_model
            )
        )

        return nn.Sequential(*global_rep), d_model

    def __repr__(self) -> str:
        repr_str = "{}(".format(self.__class__.__name__)

        repr_str += "\n\t Local representations"
        if isinstance(self.local_rep, nn.Sequential):
            for m in self.local_rep:
                repr_str += "\n\t\t {}".format(m)
        else:
            repr_str += "\n\t\t {}".format(self.local_rep)

        repr_str += "\n\t Global representations with patch size of {}x{}".format(
            self.patch_h,
            self.patch_w,
        )
        if isinstance(self.global_rep, nn.Sequential):
            for m in self.global_rep:
                repr_str += "\n\t\t {}".format(m)
        else:
            repr_str += "\n\t\t {}".format(self.global_rep)

        if isinstance(self.conv_proj, nn.Sequential):
            for m in self.conv_proj:
                repr_str += "\n\t\t {}".format(m)
        else:
            repr_str += "\n\t\t {}".format(self.conv_proj)

        repr_str += "\n)"
        return repr_str

    def unfolding_pytorch(self, feature_map: Tensor) -> Tuple[Tensor, Tuple[int, int]]:

        batch_size, in_channels, img_h, img_w = feature_map.shape

        # [B, C, H, W] --> [B, C, P, N]
        patches = F.unfold(
            feature_map,
            kernel_size=(self.patch_h, self.patch_w),
            stride=(self.patch_h, self.patch_w),
        )
        patches = patches.reshape(
            batch_size, in_channels, self.patch_h * self.patch_w, -1
        )

        return patches, (img_h, img_w)

    def folding_pytorch(self, patches: Tensor, output_size: Tuple[int, int]) -> Tensor:
        batch_size, in_dim, patch_size, n_patches = patches.shape

        # [B, C, P, N]
        patches = patches.reshape(batch_size, in_dim * patch_size, n_patches)

        feature_map = F.fold(
            patches,
            output_size=output_size,
            kernel_size=(self.patch_h, self.patch_w),
            stride=(self.patch_h, self.patch_w),
        )

        return feature_map

    def unfolding_coreml(self, feature_map: Tensor) -> Tuple[Tensor, Tuple[int, int]]:
        # im2col is not implemented in Coreml, so here we hack its implementation using conv2d
        # we compute the weights

        # [B, C, H, W] --> [B, C, P, N]
        batch_size, in_channels, img_h, img_w = feature_map.shape
        #
        patches = F.conv2d(
            feature_map,
            self.unfolding_weights,
            bias=None,
            stride=(self.patch_h, self.patch_w),
            padding=0,
            dilation=1,
            groups=in_channels,
        )
        patches = patches.reshape(
            batch_size, in_channels, self.patch_h * self.patch_w, -1
        )
        return patches, (img_h, img_w)

    def folding_coreml(self, patches: Tensor, output_size: Tuple[int, int]) -> Tensor:
        # col2im is not supported on coreml, so tracing fails
        # We hack folding function via pixel_shuffle to enable coreml tracing
        batch_size, in_dim, patch_size, n_patches = patches.shape

        n_patches_h = output_size[0] // self.patch_h
        n_patches_w = output_size[1] // self.patch_w

        feature_map = patches.reshape(
            batch_size, in_dim * self.patch_h * self.patch_w, n_patches_h, n_patches_w
        )
        assert (
            self.patch_h == self.patch_w
        ), "For Coreml, we need patch_h and patch_w are the same"
        feature_map = F.pixel_shuffle(feature_map, upscale_factor=self.patch_h)
        return feature_map

    def resize_input_if_needed(self, x):
        batch_size, in_channels, orig_h, orig_w = x.shape
        if orig_h % self.patch_h != 0 or orig_w % self.patch_w != 0:
            new_h = int(math.ceil(orig_h / self.patch_h) * self.patch_h)
            new_w = int(math.ceil(orig_w / self.patch_w) * self.patch_w)
            x = F.interpolate(
                x, size=(new_h, new_w), mode="bilinear", align_corners=True
            )
        return x

    def forward_spatial(self, x: Tensor, *args, **kwargs) -> Tensor:
        x = self.resize_input_if_needed(x)

        fm = self.local_rep(x)

        # convert feature map to patches
        if self.enable_coreml_compatible_fn:
            patches, output_size = self.unfolding_coreml(fm)
        else:
            patches, output_size = self.unfolding_pytorch(fm)

        # learn global representations on all patches
        patches = self.global_rep(patches)

        # [B x Patch x Patches x C] --> [B x C x Patches x Patch]
        if self.enable_coreml_compatible_fn:
            fm = self.folding_coreml(patches=patches, output_size=output_size)
        else:
            fm = self.folding_pytorch(patches=patches, output_size=output_size)
        fm = self.conv_proj(fm)

        return fm

    def forward_temporal(
        self, x: Tensor, x_prev: Tensor, *args, **kwargs
    ) -> Union[Tensor, Tuple[Tensor, Tensor]]:
        x = self.resize_input_if_needed(x)

        fm = self.local_rep(x)

        # convert feature map to patches
        if self.enable_coreml_compatible_fn:
            patches, output_size = self.unfolding_coreml(fm)
        else:
            patches, output_size = self.unfolding_pytorch(fm)

        # learn global representations
        for global_layer in self.global_rep:
            if isinstance(global_layer, LinearAttnFFN):
                patches = global_layer(x=patches, x_prev=x_prev)
            else:
                patches = global_layer(patches)

        # [B x Patch x Patches x C] --> [B x C x Patches x Patch]
        if self.enable_coreml_compatible_fn:
            fm = self.folding_coreml(patches=patches, output_size=output_size)
        else:
            fm = self.folding_pytorch(patches=patches, output_size=output_size)
        fm = self.conv_proj(fm)

        return fm, patches

    def forward(
        self, x: Union[Tensor, Tuple[Tensor]], *args, **kwargs
    ) -> Union[Tensor, Tuple[Tensor, Tensor]]:
        if isinstance(x, Tuple) and len(x) == 2:
            # for spatio-temporal data (e.g., videos)
            return self.forward_temporal(x=x[0], x_prev=x[1])
        elif isinstance(x, Tensor):
            # for image data
            return self.forward_spatial(x)
        else:
            raise NotImplementedError

三、DAT(Deformable Attention Transformer)

论文地址:Vision Transformer with Deformable Attention

如下图:

代码如下(代码来源):

class DAttentionBaseline(nn.Module):

    def __init__(
        self, q_size, kv_size, n_heads, n_head_channels, n_groups,
        attn_drop, proj_drop, stride, 
        offset_range_factor, use_pe, dwc_pe,
        no_off, fixed_pe, ksize, log_cpb
    ):

        super().__init__()
        self.dwc_pe = dwc_pe
        self.n_head_channels = n_head_channels
        self.scale = self.n_head_channels ** -0.5
        self.n_heads = n_heads
        self.q_h, self.q_w = q_size
        # self.kv_h, self.kv_w = kv_size
        self.kv_h, self.kv_w = self.q_h // stride, self.q_w // stride
        self.nc = n_head_channels * n_heads
        self.n_groups = n_groups
        self.n_group_channels = self.nc // self.n_groups
        self.n_group_heads = self.n_heads // self.n_groups
        self.use_pe = use_pe
        self.fixed_pe = fixed_pe
        self.no_off = no_off
        self.offset_range_factor = offset_range_factor
        self.ksize = ksize
        self.log_cpb = log_cpb
        self.stride = stride
        kk = self.ksize
        pad_size = kk // 2 if kk != stride else 0

        self.conv_offset = nn.Sequential(
            nn.Conv2d(self.n_group_channels, self.n_group_channels, kk, stride, pad_size, groups=self.n_group_channels),
            LayerNormProxy(self.n_group_channels),
            nn.GELU(),
            nn.Conv2d(self.n_group_channels, 2, 1, 1, 0, bias=False)
        )
        if self.no_off:
            for m in self.conv_offset.parameters():
                m.requires_grad_(False)

        self.proj_q = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )

        self.proj_k = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )

        self.proj_v = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )

        self.proj_out = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )

        self.proj_drop = nn.Dropout(proj_drop, inplace=True)
        self.attn_drop = nn.Dropout(attn_drop, inplace=True)

        if self.use_pe and not self.no_off:
            if self.dwc_pe:
                self.rpe_table = nn.Conv2d(
                    self.nc, self.nc, kernel_size=3, stride=1, padding=1, groups=self.nc)
            elif self.fixed_pe:
                self.rpe_table = nn.Parameter(
                    torch.zeros(self.n_heads, self.q_h * self.q_w, self.kv_h * self.kv_w)
                )
                trunc_normal_(self.rpe_table, std=0.01)
            elif self.log_cpb:
                # Borrowed from Swin-V2
                self.rpe_table = nn.Sequential(
                    nn.Linear(2, 32, bias=True),
                    nn.ReLU(inplace=True),
                    nn.Linear(32, self.n_group_heads, bias=False)
                )
            else:
                self.rpe_table = nn.Parameter(
                    torch.zeros(self.n_heads, self.q_h * 2 - 1, self.q_w * 2 - 1)
                )
                trunc_normal_(self.rpe_table, std=0.01)
        else:
            self.rpe_table = None

    @torch.no_grad()
    def _get_ref_points(self, H_key, W_key, B, dtype, device):

        ref_y, ref_x = torch.meshgrid(
            torch.linspace(0.5, H_key - 0.5, H_key, dtype=dtype, device=device),
            torch.linspace(0.5, W_key - 0.5, W_key, dtype=dtype, device=device),
            indexing='ij'
        )
        ref = torch.stack((ref_y, ref_x), -1)
        ref[..., 1].div_(W_key - 1.0).mul_(2.0).sub_(1.0)
        ref[..., 0].div_(H_key - 1.0).mul_(2.0).sub_(1.0)
        ref = ref[None, ...].expand(B * self.n_groups, -1, -1, -1) # B * g H W 2

        return ref
    
    @torch.no_grad()
    def _get_q_grid(self, H, W, B, dtype, device):

        ref_y, ref_x = torch.meshgrid(
            torch.arange(0, H, dtype=dtype, device=device),
            torch.arange(0, W, dtype=dtype, device=device),
            indexing='ij'
        )
        ref = torch.stack((ref_y, ref_x), -1)
        ref[..., 1].div_(W - 1.0).mul_(2.0).sub_(1.0)
        ref[..., 0].div_(H - 1.0).mul_(2.0).sub_(1.0)
        ref = ref[None, ...].expand(B * self.n_groups, -1, -1, -1) # B * g H W 2

        return ref

    def forward(self, x):

        B, C, H, W = x.size()
        dtype, device = x.dtype, x.device

        q = self.proj_q(x)
        q_off = einops.rearrange(q, 'b (g c) h w -> (b g) c h w', g=self.n_groups, c=self.n_group_channels)
        offset = self.conv_offset(q_off).contiguous()  # B * g 2 Hg Wg
        Hk, Wk = offset.size(2), offset.size(3)
        n_sample = Hk * Wk

        if self.offset_range_factor >= 0 and not self.no_off:
            offset_range = torch.tensor([1.0 / (Hk - 1.0), 1.0 / (Wk - 1.0)], device=device).reshape(1, 2, 1, 1)
            offset = offset.tanh().mul(offset_range).mul(self.offset_range_factor)

        offset = einops.rearrange(offset, 'b p h w -> b h w p')
        reference = self._get_ref_points(Hk, Wk, B, dtype, device)

        if self.no_off:
            offset = offset.fill_(0.0)

        if self.offset_range_factor >= 0:
            pos = offset + reference
        else:
            pos = (offset + reference).clamp(-1., +1.)

        if self.no_off:
            x_sampled = F.avg_pool2d(x, kernel_size=self.stride, stride=self.stride)
            assert x_sampled.size(2) == Hk and x_sampled.size(3) == Wk, f"Size is {x_sampled.size()}"
        else:
            x_sampled = F.grid_sample(
                input=x.reshape(B * self.n_groups, self.n_group_channels, H, W), 
                grid=pos[..., (1, 0)], # y, x -> x, y
                mode='bilinear', align_corners=True) # B * g, Cg, Hg, Wg
                

        x_sampled = x_sampled.reshape(B, C, 1, n_sample)

        q = q.reshape(B * self.n_heads, self.n_head_channels, H * W)
        k = self.proj_k(x_sampled).reshape(B * self.n_heads, self.n_head_channels, n_sample)
        v = self.proj_v(x_sampled).reshape(B * self.n_heads, self.n_head_channels, n_sample)

        attn = torch.einsum('b c m, b c n -> b m n', q, k) # B * h, HW, Ns
        attn = attn.mul(self.scale)

        if self.use_pe and (not self.no_off):

            if self.dwc_pe:
                residual_lepe = self.rpe_table(q.reshape(B, C, H, W)).reshape(B * self.n_heads, self.n_head_channels, H * W)
            elif self.fixed_pe:
                rpe_table = self.rpe_table
                attn_bias = rpe_table[None, ...].expand(B, -1, -1, -1)
                attn = attn + attn_bias.reshape(B * self.n_heads, H * W, n_sample)
            elif self.log_cpb:
                q_grid = self._get_q_grid(H, W, B, dtype, device)
                displacement = (q_grid.reshape(B * self.n_groups, H * W, 2).unsqueeze(2) - pos.reshape(B * self.n_groups, n_sample, 2).unsqueeze(1)).mul(4.0) # d_y, d_x [-8, +8]
                displacement = torch.sign(displacement) * torch.log2(torch.abs(displacement) + 1.0) / np.log2(8.0)
                attn_bias = self.rpe_table(displacement) # B * g, H * W, n_sample, h_g
                attn = attn + einops.rearrange(attn_bias, 'b m n h -> (b h) m n', h=self.n_group_heads)
            else:
                rpe_table = self.rpe_table
                rpe_bias = rpe_table[None, ...].expand(B, -1, -1, -1)
                q_grid = self._get_q_grid(H, W, B, dtype, device)
                displacement = (q_grid.reshape(B * self.n_groups, H * W, 2).unsqueeze(2) - pos.reshape(B * self.n_groups, n_sample, 2).unsqueeze(1)).mul(0.5)
                attn_bias = F.grid_sample(
                    input=einops.rearrange(rpe_bias, 'b (g c) h w -> (b g) c h w', c=self.n_group_heads, g=self.n_groups),
                    grid=displacement[..., (1, 0)],
                    mode='bilinear', align_corners=True) # B * g, h_g, HW, Ns

                attn_bias = attn_bias.reshape(B * self.n_heads, H * W, n_sample)
                attn = attn + attn_bias

        attn = F.softmax(attn, dim=2)
        attn = self.attn_drop(attn)

        out = torch.einsum('b m n, b c n -> b c m', attn, v)

        if self.use_pe and self.dwc_pe:
            out = out + residual_lepe
        out = out.reshape(B, C, H, W)

        y = self.proj_drop(self.proj_out(out))

        return y, pos.reshape(B, self.n_groups, Hk, Wk, 2), reference.reshape(B, self.n_groups, Hk, Wk, 2)

四、CrossFormer

该论文有好几个模块论文地址:CROSSFORMER: A VERSATILE VISION TRANSFORMER HINGING ON CROSS-SCALE ATTENTION

SDA、LDA、DPB如下图:

网络结构如下图:

代码如下(代码来源):

import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class DynamicPosBias(nn.Module):
    def __init__(self, dim, num_heads, residual):
        super().__init__()
        self.residual = residual
        self.num_heads = num_heads
        self.pos_dim = dim // 4
        self.pos_proj = nn.Linear(2, self.pos_dim)
        self.pos1 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim),
        )
        self.pos2 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim)
        )
        self.pos3 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.num_heads)
        )
    def forward(self, biases):
        if self.residual:
            pos = self.pos_proj(biases) # 2Wh-1 * 2Ww-1, heads
            pos = pos + self.pos1(pos)
            pos = pos + self.pos2(pos)
            pos = self.pos3(pos)
        else:
            pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
        return pos

    def flops(self, N):
        flops = N * 2 * self.pos_dim
        flops += N * self.pos_dim * self.pos_dim
        flops += N * self.pos_dim * self.pos_dim
        flops += N * self.pos_dim * self.num_heads
        return flops

class Attention(nn.Module):
    r""" Multi-head self attention module with dynamic position bias.

    Args:
        dim (int): Number of input channels.
        group_size (tuple[int]): The height and width of the group.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, group_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.,
                 position_bias=True):

        super().__init__()
        self.dim = dim
        self.group_size = group_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.position_bias = position_bias

        if position_bias:
            self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
            
            # generate mother-set
            position_bias_h = torch.arange(1 - self.group_size[0], self.group_size[0])
            position_bias_w = torch.arange(1 - self.group_size[1], self.group_size[1])
            biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))  # 2, 2Wh-1, 2W2-1
            biases = biases.flatten(1).transpose(0, 1).float()
            self.register_buffer("biases", biases)

            # get pair-wise relative position index for each token inside the group
            coords_h = torch.arange(self.group_size[0])
            coords_w = torch.arange(self.group_size[1])
            coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
            coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
            relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
            relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
            relative_coords[:, :, 0] += self.group_size[0] - 1  # shift to start from 0
            relative_coords[:, :, 1] += self.group_size[1] - 1
            relative_coords[:, :, 0] *= 2 * self.group_size[1] - 1
            relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
            self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_groups*B, N, C)
            mask: (0/-inf) mask with shape of (num_groups, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        if self.position_bias:
            pos = self.pos(self.biases) # 2Wh-1 * 2Ww-1, heads
            # select position bias
            relative_position_bias = pos[self.relative_position_index.view(-1)].view(
                self.group_size[0] * self.group_size[1], self.group_size[0] * self.group_size[1], -1)  # Wh*Ww,Wh*Ww,nH
            relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
            attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, group_size={self.group_size}, num_heads={self.num_heads}'

    def flops(self, N):
        # calculate flops for 1 group with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        if self.position_bias:
            flops += self.pos.flops(N)
        return flops


class CrossFormerBlock(nn.Module):
    r""" CrossFormer Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        group_size (int): Group size.
        lsda_flag (int): use SDA or LDA, 0 for SDA and 1 for LDA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, input_resolution, num_heads, group_size=7, lsda_flag=0,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm, num_patch_size=1):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.group_size = group_size
        self.lsda_flag = lsda_flag
        self.mlp_ratio = mlp_ratio
        self.num_patch_size = num_patch_size
        if min(self.input_resolution) <= self.group_size:
            # if group size is larger than input resolution, we don't partition groups
            self.lsda_flag = 0
            self.group_size = min(self.input_resolution)

        self.norm1 = norm_layer(dim)

        self.attn = Attention(
            dim, group_size=to_2tuple(self.group_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,
            position_bias=True)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        attn_mask = None
        self.register_buffer("attn_mask", attn_mask)

    def forward(self, x):
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size %d, %d, %d" % (L, H, W)

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # group embeddings
        G = self.group_size
        if self.lsda_flag == 0: # 0 for SDA
            x = x.reshape(B, H // G, G, W // G, G, C).permute(0, 1, 3, 2, 4, 5)
        else: # 1 for LDA
            x = x.reshape(B, G, H // G, G, W // G, C).permute(0, 2, 4, 1, 3, 5)
        x = x.reshape(B * H * W // G**2, G**2, C)

        # multi-head self-attention
        x = self.attn(x, mask=self.attn_mask)  # nW*B, G*G, C

        # ungroup embeddings
        x = x.reshape(B, H // G, W // G, G, G, C)
        if self.lsda_flag == 0:
            x = x.permute(0, 1, 3, 2, 4, 5).reshape(B, H, W, C)
        else:
            x = x.permute(0, 3, 1, 4, 2, 5).reshape(B, H, W, C)
        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
               f"group_size={self.group_size}, lsda_flag={self.lsda_flag}, mlp_ratio={self.mlp_ratio}"

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        # LSDA
        nW = H * W / self.group_size / self.group_size
        flops += nW * self.attn.flops(self.group_size * self.group_size)
        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops

class PatchMerging(nn.Module):
    r""" Patch Merging Layer.

    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm, patch_size=[2], num_input_patch_size=1):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reductions = nn.ModuleList()
        self.patch_size = patch_size
        self.norm = norm_layer(dim)

        for i, ps in enumerate(patch_size):
            if i == len(patch_size) - 1:
                out_dim = 2 * dim // 2 ** i
            else:
                out_dim = 2 * dim // 2 ** (i + 1)
            stride = 2
            padding = (ps - stride) // 2
            self.reductions.append(nn.Conv2d(dim, out_dim, kernel_size=ps, 
                                                stride=stride, padding=padding))

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = self.norm(x)
        x = x.view(B, H, W, C).permute(0, 3, 1, 2)

        xs = []
        for i in range(len(self.reductions)):
            tmp_x = self.reductions[i](x).flatten(2).transpose(1, 2)
            xs.append(tmp_x)
        x = torch.cat(xs, dim=2)
        return x

    def extra_repr(self) -> str:
        return f"input_resolution={self.input_resolution}, dim={self.dim}"

    def flops(self):
        H, W = self.input_resolution
        flops = H * W * self.dim
        for i, ps in enumerate(self.patch_size):
            if i == len(self.patch_size) - 1:
                out_dim = 2 * self.dim // 2 ** i
            else:
                out_dim = 2 * self.dim // 2 ** (i + 1)
            flops += (H // 2) * (W // 2) * ps * ps * out_dim * self.dim
        return flops


class Stage(nn.Module):
    """ CrossFormer blocks for one stage.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        group_size (int): variable G in the paper, one group has GxG embeddings
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, input_resolution, depth, num_heads, group_size,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
                 patch_size_end=[4], num_patch_size=None):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList()
        for i in range(depth):
            lsda_flag = 0 if (i % 2 == 0) else 1
            self.blocks.append(CrossFormerBlock(dim=dim, input_resolution=input_resolution,
                                 num_heads=num_heads, group_size=group_size,
                                 lsda_flag=lsda_flag,
                                 mlp_ratio=mlp_ratio,
                                 qkv_bias=qkv_bias, qk_scale=qk_scale,
                                 drop=drop, attn_drop=attn_drop,
                                 drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                                 norm_layer=norm_layer,
                                 num_patch_size=num_patch_size))

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer, 
                                         patch_size=patch_size_end, num_input_patch_size=num_patch_size)
        else:
            self.downsample = None

    def forward(self, x):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
        if self.downsample is not None:
            x = self.downsample(x)
        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"

    def flops(self):
        flops = 0
        for blk in self.blocks:
            flops += blk.flops()
        if self.downsample is not None:
            flops += self.downsample.flops()
        return flops


class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: [4].
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=224, patch_size=[4], in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        # patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[0] // patch_size[0]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.projs = nn.ModuleList()
        for i, ps in enumerate(patch_size):
            if i == len(patch_size) - 1:
                dim = embed_dim // 2 ** i
            else:
                dim = embed_dim // 2 ** (i + 1)
            stride = patch_size[0]
            padding = (ps - patch_size[0]) // 2
            self.projs.append(nn.Conv2d(in_chans, dim, kernel_size=ps, stride=stride, padding=padding))
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        xs = []
        for i in range(len(self.projs)):
            tx = self.projs[i](x).flatten(2).transpose(1, 2)
            xs.append(tx)  # B Ph*Pw C
        x = torch.cat(xs, dim=2)
        if self.norm is not None:
            x = self.norm(x)
        return x

    def flops(self):
        Ho, Wo = self.patches_resolution
        flops = 0
        for i, ps in enumerate(self.patch_size):
            if i == len(self.patch_size) - 1:
                dim = self.embed_dim // 2 ** i
            else:
                dim = self.embed_dim // 2 ** (i + 1)
            flops += Ho * Wo * dim * self.in_chans * (self.patch_size[i] * self.patch_size[i])
        if self.norm is not None:
            flops += Ho * Wo * self.embed_dim
        return flops


class CrossFormer(nn.Module):
    r""" CrossFormer
        A PyTorch impl of : `CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention`  -

    Args:
        img_size (int | tuple(int)): Input image size. Default 224
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each stage.
        num_heads (tuple(int)): Number of attention heads in different layers.
        group_size (int): Group size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self, img_size=224, patch_size=[4], in_chans=3, num_classes=1000,
                 embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
                 group_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
                 use_checkpoint=False, merge_size=[[2], [2], [2]], **kwargs):
        super().__init__()

        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()

        num_patch_sizes = [len(patch_size)] + [len(m) for m in merge_size]
        for i_layer in range(self.num_layers):
            patch_size_end = merge_size[i_layer] if i_layer < self.num_layers - 1 else None
            num_patch_size = num_patch_sizes[i_layer]
            layer = Stage(dim=int(embed_dim * 2 ** i_layer),
                               input_resolution=(patches_resolution[0] // (2 ** i_layer),
                                                 patches_resolution[1] // (2 ** i_layer)),
                               depth=depths[i_layer],
                               num_heads=num_heads[i_layer],
                               group_size=group_size[i_layer],
                               mlp_ratio=self.mlp_ratio,
                               qkv_bias=qkv_bias, qk_scale=qk_scale,
                               drop=drop_rate, attn_drop=attn_drop_rate,
                               drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                               norm_layer=norm_layer,
                               downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
                               use_checkpoint=use_checkpoint,
                               patch_size_end=patch_size_end,
                               num_patch_size=num_patch_size)
            self.layers.append(layer)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    def forward_features(self, x):
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x)

        x = self.norm(x)  # B L C
        x = self.avgpool(x.transpose(1, 2))  # B C 1
        x = torch.flatten(x, 1)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x

    def flops(self):
        flops = 0
        flops += self.patch_embed.flops()
        for i, layer in enumerate(self.layers):
            flops += layer.flops()
        flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
        flops += self.num_features * self.num_classes
        return flops

五、MOA(multi-resolution overlapped attention)

论文地址:Aggregating Global Features into Local Vision Transformer

如下图:

代码如下(代码来源):


# --------------------------------------------------------
# Adopted from Swin Transformer
# Modified by Krushi Patel
# --------------------------------------------------------

import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from einops.layers.torch import Rearrange, Reduce

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


def window_partition(x, window_size):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows





def window_reverse(windows, window_size, H, W):
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.query_size = self.window_size
        self.key_size = self.window_size[0] * 2
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        
        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH
        
        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0

        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww

        
        attn = attn + relative_position_bias.unsqueeze(0)

      
        attn = self.softmax(attn)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        #return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
        return f'dim={self.dim}, num_heads={self.num_heads}'
    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops

class GlobalAttention(nn.Module):
    r""" MOA - multi-head self attention (W-MSA) module with relative position bias.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, input_resolution,num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.query_size = self.window_size[0]
       
        self.key_size = self.window_size[0] + 2
        h,w = input_resolution
        self.seq_len = h//self.query_size
    
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.reduction = 32
        self.pre_conv = nn.Conv2d(dim, int(dim//self.reduction), 1)
     
      
        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * self.seq_len - 1) * (2 * self.seq_len - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH
        #print(self.relative_position_bias_table.shape)
        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.seq_len)
        coords_w = torch.arange(self.seq_len)
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
     
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2

        relative_coords[:, :, 0] += self.seq_len - 1  # shift to start from 0

        relative_coords[:, :, 1] += self.seq_len - 1
        relative_coords[:, :, 0] *= 2 * self.seq_len - 1
       
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
      
        self.register_buffer("relative_position_index", relative_position_index)
        
       

        self.queryembedding = Rearrange('b c (h p1) (w p2) -> b (p1 p2 c) h w', p1 = self.query_size, p2 = self. query_size)

        self.keyembedding = nn.Unfold(kernel_size=(self.key_size, self.key_size), stride = 14, padding=1)
   
        self.query_dim = int(dim//self.reduction) * self.query_size * self.query_size
        self.key_dim = int(dim//self.reduction) * self.key_size * self.key_size
                
        self.q = nn.Linear(self.query_dim, self.dim,bias=qkv_bias)
        self.kv = nn.Linear(self.key_dim, 2*self.dim,bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim,dim)
        self.proj_drop = nn.Dropout(proj_drop)

        #trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, H, W):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """

        #B, H, W, C = x.shape
        B,_, C = x.shape  
          
        x = x.reshape(-1, C, H, W)    
        x = self.pre_conv(x)
        query = self.queryembedding(x).view(B,-1,self.query_dim)
        query = self.q(query)
        B,N,C = query.size()
        
        q = query.reshape(B,N,self.num_heads, C//self.num_heads).permute(0,2,1,3)
        key = self.keyembedding(x).view(B,-1,self.key_dim)
        kv = self.kv(key).reshape(B,N,2,self.num_heads,C//self.num_heads).permute(2,0,3,1,4)
        k = kv[0]
        v = kv[1]
        
        
        q = q * self.scale
        
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.seq_len * self.seq_len, self.seq_len * self.seq_len, -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww

       
        attn = attn + relative_position_bias.unsqueeze(0)
      
        attn = self.softmax(attn)
        
        attn = self.attn_drop(attn)
     
        x = (attn @ v).transpose(1, 2).reshape(B, N, C) 
     
        x = self.proj(x)
      
        x = self.proj_drop(x)

        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops


class LocalTransformerBlock(nn.Module):
    r""" Local Transformer Block.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, input_resolution, num_heads, window_size=7,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio
   
        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
           
            self.window_size = min(self.input_resolution)
   
       
        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)



    def forward(self, x):
        H, W = self.input_resolution
     
        B, L, C = x.shape
      
        assert L == H * W, "input feature has wrong size"
       
        shortcut = x
        x = self.norm1(x)
        
        x = x.view(B, H, W, C)
     

    
        x_windows = window_partition(x, self.window_size)  # nW*B, window_size, window_size, C 
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C     
        attn_windows = self.attn(x_windows)  # nW*B, window_size*window_size, C    
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C
        x = x.view(B, H * W, C)


       

 
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
               f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        # W-MSA/SW-MSA
        nW = H * W / self.window_size / self.window_size
        flops += nW * self.attn.flops(self.window_size * self.window_size)
        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops


class PatchMerging(nn.Module):
    """ Patch Merging Layer.

    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.input_resolution = input_resolution
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        """
        x: B, H*W, C
        """
        H, W = self.input_resolution
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = x.view(B, H, W, C)

        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C

        x = self.norm(x)
        x = self.reduction(x)

        return x

    def extra_repr(self) -> str:
        return f"input_resolution={self.input_resolution}, dim={self.dim}"

    def flops(self):
        H, W = self.input_resolution
        flops = H * W * self.dim
        flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
        return flops


class BasicLayer(nn.Module):
    """ A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resolution.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, input_resolution, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, drop_path_global=0., use_checkpoint=False):

        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint
        self.window_size = window_size
       
        self.drop_path_gl = DropPath(drop_path_global) if drop_path_global > 0. else nn.Identity()
        # build blocks
        self.blocks = nn.ModuleList([
            LocalTransformerBlock(dim=dim, input_resolution=input_resolution,
                                 num_heads=num_heads, window_size=window_size,
                                 mlp_ratio=mlp_ratio,
                                 qkv_bias=qkv_bias, qk_scale=qk_scale,
                                 drop=drop, attn_drop=attn_drop,
                                 drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                                 norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer
        if downsample is not None:
           if min(self.input_resolution) >= self.window_size:
                 self.glb_attn = GlobalAttention(dim, to_2tuple(window_size), self.input_resolution, num_heads = num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
                 self.post_conv = nn.Conv2d(dim, dim, 3, padding=1)
                 self.norm1 = norm_layer(dim)
                 self.norm2 = norm_layer(dim)
                
           else:
                 self.post_conv = None
                 self.glb_attn = None
                 self.norm1 = None
                 self.norm2 = None
                
           self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
           
            
        else:
            self.downsample = None
            
    def forward(self, x):
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x)
            else:
                x = blk(x)
                
        if self.downsample is not None:
        
           if min(self.input_resolution) >= self.window_size:
                shortcut = x
                x = self.norm1(x)
                H, W = self.input_resolution
                B,_,C = x.size()
         
                no_window = int(H*W/self.window_size**2)   
                local_attn = x.view(B,no_window,self.window_size, self.window_size,C)
             
                glb_attn = self.glb_attn(x, H, W)
                glb_attn = glb_attn.view(B,no_window,1,1,C)
                x = torch.add(local_attn, glb_attn).view(B,C,H,W)
              

                x = shortcut.view(B,C,H,W) + self.drop_path_gl(x)
                x = self.norm2(x.view(B,H*W,C))
                post_conv = self.drop_path_gl(self.post_conv(x.view(B,C,H,W))).view(B, H*W, C)
                x = x + post_conv
                
           x = self.downsample(x)
        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"

    def flops(self):
        flops = 0
        for blk in self.blocks:
            flops += blk.flops()
        if self.downsample is not None:
            flops += self.downsample.flops()
        return flops


class PatchEmbed(nn.Module):
    r""" Image to Patch Embedding

    Args:
        img_size (int): Image size.  Default: 224.
        patch_size (int): Patch token size. Default: 4.
        in_chans (int): Number of input image channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)  # B Ph*Pw C
        if self.norm is not None:
            x = self.norm(x)
        return x

    def flops(self):
        Ho, Wo = self.patches_resolution
        flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
        if self.norm is not None:
            flops += Ho * Wo * self.embed_dim
        return flops


class MOATransformer(nn.Module):
    r""" Swin Transformer
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:
        img_size (int | tuple(int)): Input image size. Default 224
        patch_size (int | tuple(int)): Patch size. Default: 4
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
                 embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
                 window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                 norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
                 use_checkpoint=False, **kwargs):
        super().__init__()

        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        dpr_global = [x.item() for x in torch.linspace(0, 0.2, len(depths)-1)]
        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
                               input_resolution=(patches_resolution[0] // (2 ** i_layer),
                                                 patches_resolution[1] // (2 ** i_layer)),
                               depth=depths[i_layer],
                               num_heads=num_heads[i_layer],
                               window_size=window_size,
                               mlp_ratio=self.mlp_ratio,
                               qkv_bias=qkv_bias, qk_scale=qk_scale,
                               drop=drop_rate, attn_drop=attn_drop_rate,
                               drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                               norm_layer=norm_layer,
                               downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
                               drop_path_global = (dpr_global[i_layer]) if (i_layer < self.num_layers -1) else 0,
                               use_checkpoint=use_checkpoint)
            self.layers.append(layer)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    def forward_features(self, x):
        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)
 
        for layer in self.layers:
            x = layer(x)
           
        x = self.norm(x)  # B L C
        x = self.avgpool(x.transpose(1, 2))  # B C 1
        x = torch.flatten(x, 1)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x

    def flops(self):
        flops = 0
        flops += self.patch_embed.flops()
        for i, layer in enumerate(self.layers):
            flops += layer.flops()
        flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
        flops += self.num_features * self.num_classes
        return flops

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/251634.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

昇腾Profiling性能分析工具使用问题案例

昇腾Profiling性能分析工具用于采集和分析运行在昇腾硬件上的AI任务各个运行阶段的关键性能指标, 用户可根据输出的性能数据&#xff0c;快速定位软、硬件性能瓶颈&#xff0c;提升AI任务性能分析的效率。具体使用方法请参考&#xff1a; 本期分享几个关于Profiling性能分析工具…

知识付费小程序开发:构建个性化学习平台的技术实践

随着在线学习和知识付费的兴起&#xff0c;开发一款知识付费小程序成为了创新的热点之一。本文将通过使用Node.js、Express和MongoDB为例&#xff0c;演示如何构建一个基础的知识付费小程序后端&#xff0c;并实现用户认证和知识内容管理。 1. 初始化项目 首先&#xff0c;确…

【C语言】——认识指针变量和地址,以及指针变量类型的意义

&#x1f3a5; 岁月失语唯石能言的个人主页 &#x1f525;个人栏专&#xff1a;秒懂C语言 ⭐若在许我少年时&#xff0c;一两黄金一两风 目录 前言 一、指针变量和地址 1.1 取地址操作符&#xff08;&&#xff09; 1.2 指针变量和解引用操作符&#xff…

【vmware】虚拟机固定ip和网络配置

废话不多说&#xff0c;直接干货 桥接模式不多说&#xff0c;动态ip&#xff0c;一般一键下一步就可 本文主要讲 NAT模式下 静态IP设置及公网问题 创建虚拟机 查看ip ip a 或者 ifconfig 设置静态ip 1.设置虚拟机网络 点击上图中NAT设置&#xff0c;配置网关IP&#xff08;vmv…

【改进YOLOv8】生猪胖瘦评价分级系统:可重参化EfficientRepBiPAN优化Neck

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义&#xff1a; 随着计算机视觉和深度学习的快速发展&#xff0c;目标检测成为了计算机视觉领域的一个重要研究方向。目标检测的目标是在图像或视频中准确地识别和定…

DL Homework 11

由于好多同学问我要代码&#xff0c;但这两天光顾着考四六级了&#xff0c;所以只能今天熬夜先给赶出来&#xff0c;第一题先搁置&#xff0c;晚点补上&#xff0c;先写第二题 习题6-4 推导LSTM网络中参数的梯度&#xff0c; 并分析其避免梯度消失的效果 习题6-3P 编程实现…

pat 乙级 1018 锤子剪刀布

解题思路&#xff0c;这题你硬比也可以&#xff0c;用技巧减少比较也可以&#xff0c;总共有九种情况 去掉 都相同的 还有6种&#xff0c;我的想法是这样 把 B C J 转换成了0 1 2&#xff0c;这样我们只要看他们大小就行&#xff0c;如果前面的比后面的小并且只差1,那就是前面的…

Java 并发编程(六)-Fork/Join异步回调

一、并发编程 1、Fork/Join分支合并框架 Fork/Join它可以将一个大的任务拆分成多个子任务进行并行处理&#xff0c;最后将子任务结果合并成最后的计算结果&#xff0c;并进行输出。Fork/Join框架要完成两件事情&#xff1a; Fork&#xff1a;把一个复杂任务进行分拆&#xff0…

一文搞懂Android和嵌入式Linux开发差异点

前言 因业务需要&#xff0c;过去一年从熟悉的Android开发开始涉及嵌入式Linux开发&#xff0c;编程语言也从Java/Kotlin变成难上手的C&#xff0c;这里面其实有很多差异点&#xff0c;特此整理本文来详细对比这两者开发的异同&#xff0c;便于对嵌入式Linux开发感兴趣的同学一…

Java 多线程学习(三)

目录 一、多线程 1、深入synchronized 1.1、synchronized的优化 1.2、synchronized实现原理 1.3、synchronized的锁升级 1.4、重量锁底层ObjectMonitor 一、多线程 1、深入synchronized 1.1、synchronized的优化 在JDK1.5的时候&#xff0c;Doug Lea推出了ReentrantLoc…

Redis核心知识小结

基础 redis为什么快呢&#xff1f; 单线程基于io多路复用底层C语言对数据结构做了优化完全内存的操作 Redis6.0使用多线程是怎么回事? Redis不是说用单线程的吗&#xff1f;怎么6.0成了多线程的&#xff1f; Redis6.0的多线程是用多线程来处理数据的读写和协议解析&#x…

【算法笔记】动态规划,使用最小花费爬楼梯,详细刨析。

1.题目描述 给你一个整数数组 cost &#xff0c;其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用&#xff0c;即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。 请你计算并返回达到楼梯顶部的最低花费。 示…

linux 开机启动流程

1.打开电源 2.BIOS 有时间和启动方式 3.启动Systemd 其pid为1 4.挂载引导分区 /boot 5.启动各种服务 如rc.local

STM32 EC200 物联网项目实操 第2篇 FTP OTA升级

背景&#xff1a; 做了个物联网项目&#xff0c;需要做个OTA升级&#xff0c;程序分为两部分&#xff0c;一部分是BOOT引导程序&#xff0c;一部是主程序&#xff0c;在BOOT引导程序里面实现了和EC200 4G模块通讯&#xff0c;和FTP服务器通讯&#xff0c;获取OTA升级BIN文件。主…

【前端八股】系列之性能指标与评估工具

【前端八股】系列之性能指标与评估工具 前言性能指标的定义和特性性能指标的分类实验室指标真实指标用户感知指标评估工具 前言 这里是以前自己关于性能指标与评估工具的相关笔记&#xff0c;下面主要是关于性能指标的定义与特性以及相关的评估工具&#xff0c;并没有记录深入…

人工智能_机器学习065_SVM支持向量机KKT条件_深度理解KKT条件下的损失函数求解过程_公式详细推导---人工智能工作笔记0105

之前我们已经说了KKT条件,其实就是用来解决 如何实现对,不等式条件下的,目标函数的求解问题,之前我们说的拉格朗日乘数法,是用来对 等式条件下的目标函数进行求解. KKT条件是这样做的,添加了一个阿尔法平方对吧,这个阿尔法平方肯定是大于0的,那么 可以结合下面的文章去看,也…

mysql8支持远程访问

上面的localhost要改为%号就打开了远程访问 ALTER USER root% IDENTIFIED WITH mysql_native_password BY fengzi2141;

vite原理

一、依赖预构建 1、为什么需要依赖预构建 CommonJS和UMD兼容性 在开发阶段中&#xff0c;vite的开发服务器将所有的代码视为原生ES模块。因此&#xff0c;vite必须先将作为CommonJS或者UMD发布的依赖项转换为ESM。 这是vite的一个特色&#xff0c;也是为什么会相对于webpack比…

Android动画(一)——逐帧动画

目录 介绍 Android动画类型分类 逐帧动画 逐帧动画的使用 效果图 介绍 Android动画是一种用于创建视觉效果和交互体验的技术&#xff0c;可以增强用户界面的吸引力和响应性。Android提供了丰富的动画框架和API&#xff0c;使开发者可以轻松地添加动画效果到他们的应用程序中…

n维随机变量、n维随机变量的分布函数

设随机试验E的样本空间是&#xff0c;其中表示样本点。 设是定义在上的随机变量&#xff0c;由它们构成一个n维向量&#xff0c;叫做n维随机向量&#xff0c;也叫n维随机变量。 对于任意n个实数&#xff0c;n元函数 称为n维随机变量的分布函数&#xff0c;也叫联合分布函数。