基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(四)

系列文章目录

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(一)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(二)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(三)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(四)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(五)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(六)


目录

  • 系列文章目录
  • 前言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
  • 模块实现
    • 1. 数据预处理
    • 2. 数据增强
    • 3. 普通CNN模型
      • 1)模型结构
      • 2)模型优化
      • 3)模型训练
      • 4)模型保存
    • 4. 残差网络模型
      • 1)残差网络的介绍
      • 2)模型结构
      • 3)模型训练
      • 4)模型保存
  • 其他相关博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

本项目以卷积神经网络(CNN)模型为基础,对收集到的猫咪图像数据进行训练。通过采用数据增强技术和结合残差网络的方法,旨在提高模型的性能,以实现对不同猫的种类进行准确识别。

首先,项目利用CNN模型,这是一种专门用于图像识别任务的深度学习模型。该模型通过多个卷积和池化层,能够有效地捕捉图像中的特征,为猫的种类识别提供强大的学习能力。

其次,通过对收集到的数据进行训练,本项目致力于建立一个能够准确辨识猫的种类的模型。包括各种猫的图像,以确保模型能够泛化到不同的种类和场景。

为了进一步提高模型性能,采用了数据增强技术。数据增强通过对训练集中的图像进行旋转、翻转、缩放等操作,生成更多的变体,有助于模型更好地适应不同的视角和条件。

同时,引入残差网络的思想,有助于解决深层网络训练中的梯度消失问题,提高模型的训练效果。这种结合方法使得模型更具鲁棒性和准确性。

最终,通过本项目,实现了对猫的种类进行精准识别的目标。这对于宠物领域、动物学研究等方面都具有实际应用的潜力,为相关领域提供了一种高效而可靠的工具。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

系统流程如图所示。

在这里插入图片描述

运行环境

本部分包括计算型云服务器、Python环境、TensorFlow环境和MySQL环境。

详见博客。

模块实现

本项目包括5个模块:数据预处理、数据增强、普通CNN模型、残差网络模型、模型生成。下面分别给出各模块的功能介绍及相关代码。

1. 数据预处理

打开浏览器,分别搜索布偶猫、孟买猫、暹罗猫和英国短毛猫的图片。用批量下载器下载图片,筛选出特征明显的图片作为数据集。使用的图片包含101张布偶猫、97张孟买猫、101张逼罗猫以及85张英国短毛猫,共计384张图片。(其中在工程代码中/cat_kind_model/cat_data_100/cat_kind_model/cat_data_224也可下载)

详见博客。

2. 数据增强

所谓数据增强,是通过翻转、旋转、比例缩放、随机裁剪、移位、添加噪声等操作对现有数据集进行拓展。本项目中数据量较小,无法提取图片的深层特征,使用深层的残差网络时易造成模型过拟合。

详见博客。

3. 普通CNN模型

处理图片数据格式后,转换为数组作为模型的输入,并根据文件名提取标签,定义模型结构、优化器、损失函数和性能指标。本项目使用Keras提供类似VGG的卷积神经网络。

1)模型结构

详见博客。

2)模型优化

详见博客。

3)模型训练

详见博客。

4)模型保存

详见博客。

4. 残差网络模型

本部分包括残差网络的介绍、模型结构以及模型训练。

1)残差网络的介绍

网络深度对模型性能至关重要,增加网络层数,可以进行更加复杂的特征提取。但是,深层网络会出现退化问题,即随着网络层数的增加,训练集的损失逐渐下降,然后趋于饱和,当网络深度继续增加时,训练集损失反而会增大。残差网络的思想是把当前层的全部信息映射到下一层,可以有效解决退化问题,优化网络性能。残差网络由一系列残差块组成,残差块分为直接映射部分和残差剖部分。

2)模型结构

模型结构导入相应库的操作如下:

from __future__ import print_function
import numpy as np
import warnings
from keras.layers import Input
from keras import layers
from keras.layers import Dense
from keras.layers import Activation
from keras.layers import Flatten
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import GlobalMaxPooling2D
from keras.layers import ZeroPadding2D
from keras.layers import AveragePooling2D
from keras.layers import GlobalAveragePooling2D
from keras.layers import BatchNormalization
from keras.models import Model
from keras.preprocessing import image
import keras.backend as K
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras.applications.imagenet_utils import decode_predictions
from keras.applications.imagenet_utils import preprocess_input
import platform  #用于平台检测
if platform.system() == "Windows":
    from keras_applications.imagenet_utils import _obtain_input_shape
elif platform.system() == "Linux":
    from keras_applications.imagenet_utils import _obtain_input_shape
from keras.engine.topology import get_source_inputs

残差网络模型由identity_blockconv_block组成,identity_block与普通的网络相同,包含三个卷积层,相关代码如下:

def identity_block(input_tensor, kernel_size, filters, stage, block):
    filters1, filters2, filters3 = filters
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'
    #包含三个卷积层
    x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)
    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
    x = Activation('relu')(x)
    x = Conv2D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x)
    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
    x = Activation('relu')(x)
    x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
    x = layers.add([x, input_tensor])
    x = Activation('relu')(x)
return x

conv_block包含三个卷积层和一个直连,相关代码如下:

	def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):  #定义卷积块
    filters1, filters2, filters3 = filters
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'
    x = Conv2D(filters1, (1, 1), strides=strides, name=conv_name_base + '2a')(input_tensor)
    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
    x = Activation('relu')(x)
    x = Conv2D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x)
    x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
    x = Activation('relu')(x)
    x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
#把输入层的全部信息直接合并到输出
    shortcut = Conv2D(filters3, (1, 1), strides=strides,
                      name=conv_name_base + '1')(input_tensor)
    shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)
    x = layers.add([x, shortcut])
    x = Activation('relu')(x)
return x

定义好两个模块后开始搭建残差网络模型。相关代码如下:

def ResNet50(include_top=True, weights='imagenet',   #定义残差网络
             input_tensor=None, input_shape=None,
             pooling=None,
             classes=1000):
    if weights not in {'imagenet', 'cat_kind', None}:
        raise ValueError('The `weights` argument should be either '
               '`None` (random initialization) or `cat_kind` or `imagenet` '
                         '(pre-training on ImageNet).')
    if weights == 'imagenet' and include_top:
        classes = 1000
    if weights == 'cat_kind':
        classes = 4
    #如果在imagenet上面微调,并且包含了全连接层,那么类别必须是1000
    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as imagenet with `include_top`'
                         ' as true, `classes` should be 1000')
    #确定合适的输入格式
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=197,
                                      data_format=K.image_data_format(),
                                      #include_top=include_top)
                                      require_flatten=include_top)
    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    if K.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1
	   #构建模型结构
    x = ZeroPadding2D((3, 3))(img_input)
    x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
    x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')
    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')
    x = AveragePooling2D((7, 7), name='avg_pool')(x)
    if include_top:
        x = Flatten()(x)
        x = Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = GlobalMaxPooling2D()(x)
    #确保模型考虑了input_tensor的任何潜在预处理
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    #创建模型
    model = Model(inputs, x, name='resnet50')
    #加载权重
    if weights == 'imagenet':
        if include_top:
            #调用模型下载,这里本地提供,所以将其注释
            #weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels.h5',
            #WEIGHTS_PATH,
            #cache_subdir='models',
              md5_hash='a7b3fe01876f51b976af0dea6bc144eb')
            weights_path = WEIGHTS_PATH_
        else:
            #调用模型下载,这里本地提供,所以将其注释
            #weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
            #WEIGHTS_PATH_NO_TOP,
            #cache_subdir='models',
md5_hash='a268eb855778b3df3c7506639542a6af')
            weights_path = WEIGHTS_PATH_NO_TOP
        model.load_weights(weights_path)
        if K.backend() == 'theano':
            layer_utils.convert_all_kernels_in_model(model
        if K.image_data_format() == 'channels_first':
            if include_top:
                maxpool = model.get_layer(name='avg_pool')
                shape = maxpool.output_shape[1:]
                dense = model.get_layer(name='fc1000')
                layer_utils.convert_dense_weights_data_format(dense, shape, 'channels_first')
            if K.backend() == 'tensorflow':
              warnings.warn('You are using the TensorFlow backend, yet you '                              'are using the Theano '
                              'image data format convention '
                              '(`image_data_format="channels_first"`). '
                              'For best performance, set '
                              '`image_data_format="channels_last"` in '
                              'your Keras config '
                              'at ~/.keras/keras.json.')
    #加载猫种类的权重
    if weights == 'cat_kind':
        WEIGHTS_PATH = '../models/cat_weight_resNet50.h5'
        model.load_weights(WEIGHTS_PATH)
    return model

3)模型训练

用残差网络模型训练数据。相关代码如下:

import os   #导入各种模块
from PIL import Image
import numpy as np
from keras.utils import np_utils
from keras.optimizers import SGD, RMSprop, Adam
import argparse
from resnet_example.resnet50 import ResNet50
def convert_image_array(filename, src_dir):  #定义转换图像数组
    img = Image.open(os.path.join(src_dir, filename)).convert('RGB')
    return np.array(img)
def prepare_data(train_or_test_dir):
    x_train_test = []
    #将训练或者测试集图片转换为数组
    ima1 = os.listdir(train_or_test_dir)
    for i in ima1:
        x_train_test.append(convert_image_array(i, train_or_test_dir))
    x_train_test = np.array(x_train_test)
    #根据文件名提取标签
    y_train_test = []
    for filename in ima1:
        y_train_test.append(int(filename.split('_')[0]))
    y_train_test = np.array(y_train_test)
    #将标签转换格式
    y_train_test = np_utils.to_categorical(y_train_test)
    # 将特征点从0~255转换成0~1提高特征提取精度
    x_train_test = x_train_test.astype('float32')
    x_train_test /= 255
    #返回训练和测试数据
    return x_train_test, y_train_test
def main_args():  #定义函数参数解析
    parser = argparse.ArgumentParser()
    parser.add_argument('--train_dir', type=str, default='../cat_data_224/train',
                        help="the path to the training imgs")
    parser.add_argument('--test_dir', type=str, default='../cat_data_224/test', help='the path to the testing imgs')
    parser.add_argument("--save_model", type=str, default='../models/cat_weight_res.h5', help='the path and the model name')
    parser.add_argument("--batch_size", type=int, default=10, help='the training batch size of data')
    parser.add_argument("--epochs", type=int, default=64, help='the training epochs')
    options = parser.parse_args()
    return options
if __name__ == "__main__":
    #调用函数获取用户参数
    options = main_args()
    #搭建卷积神经网络
    #输入大小必须至少197x197;
    model = ResNet50(weights=None, classes=4)
    #选择在imagenet上进行微调
    #model = ResNet50(include_top=False, weights='imagenet', classes=4)
    sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
    #调用函数获取训练数据和标签
    x_train, y_train = prepare_data(options.train_dir)
    x_test, y_test = prepare_data(options.test_dir)
    model.fit(x_train, y_train, shuffle=True, batch_size=options.batch_size,
              epochs=options.epochs, validation_data=(x_test, y_test))

4)模型保存

模型保存的相关代码如下:

save_model_path = os.path.dirname(options.save_model)
if not os.path.exists(save_model_path):
    os.mkdir(save_model_path)
#保存模型
model.save_weights(options.save_model, overwrite=True)
score = model.evaluate(x_test, y_test, batch_size=options.batch_size)
print("Testing loss:{0},Testing acc:{1}".format(score[0], score[1]))

其他相关博客

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(一)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(二)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(三)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(五)

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(六)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/247449.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

飞天使-docker知识点8-docker的资源限制

文章目录 容器资源限制示例 容器资源限制 Docker提供了多种资源限制的方式,可以根据应用程序的需求和系统资源的可用性进行选择。以下是一些常见的Docker资源限制及其使用情况:CPU限制:通过设置CPU的配额(quota)和周期…

YOLOv8-Seg改进:UniRepLKNetBlock 助力分割 | UniRepLKNet,通用感知大内核卷积网络, 2023.12

🚀🚀🚀本文改进: UniRepLKNet,通用感知大内核卷积网络,ImageNet-22K预训练,精度 和速度SOTA,ImageNet达到88%, COCO达到56.4 box AP,ADE20K达到55.6 mIoU UniRepLKNetBlock 与C2f进行结合使用 🚀🚀🚀YOLOv8-seg创新专栏:http://t.csdnimg.cn/KLSdv 学姐带…

安装NLTK Data

文章目录 NLTK离线安装1. 获取安装包2. 放置nltk_data文件3. Demo4. 参考链接 关注公众号:『AI学习星球』 算法学习、4对1辅导、论文辅导或核心期刊可以通过公众号或CSDN滴滴我 nltk库是python语言为自然语言处理提供的一个功能强大,简单易用的函数库&a…

AUTOSAR组织引入了Rust语言的原因是什么?有哪些好处?与C++相比它有什么优点?并推荐一些入门学习Rust语言链接等

AUTOSAR(汽车开放系统架构)是一个由汽车制造商、供应商和其他来自电子、半导体和软件行业的公司组成的全球发展伙伴关系,自2003年以来一直致力于为汽车行业开发和引入开放、标准化的软件平台。 AUTOSAR 最近宣布成立一个新的工作组,用于探索在汽车软件中使用 Rust 编程语言…

python初试二

连接数据库 Django为多种数据库后台提供了统一的调用API。根据需求不同,Django可以选择不同的数据库后台。MySQL算是最常用的数据库。我们这里将Django和MySQL连接。 在Linux终端下启动mysql: $mysql -u root -p 在MySQL中创立Django项目的数据库: …

Python—KNN分类算法

原文: https://zhuanlan.zhihu.com/p/143092725 1. 概述 KNN 可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一。注意:KNN 算法是有监督学习中的分类算法,它看起来和另一个机器学习算法 K-means 有点像&#xff0…

山峰个数 - 华为OD统一考试

OD统一考试 分值: 100分 题解: Java / Python / C++ 题目描述 给定一个数组,数组中的每个元素代表该位置的海拔高度。0表示平地,>=1时表示属于某个山峰,山峰的定义为当某个位置的左右海拔均小于自己的海拔时,该位置为山峰。数组起始位置计算时可只满足一边的条件。 …

【Hive】——CLI客户端(bin/beeline,bin/hive)

1 HiveServer、HiveServer2 2 bin/hive 、bin/beeline 区别 3 bin/hive 客户端 hive-site.xml 配置远程 MateStore 地址 XML <?xml version"1.0" encoding"UTF-8" standalone"no"?> <?xml-stylesheet type"text/xsl" hre…

基于OHTPPS实现网站HTTPS访问

前言 笔者近期为网站配置HTTPS的域名&#xff0c;查找了大量方案&#xff0c;最近寻得一个不错的解决方式&#xff0c;通过OHTTPS获取免费的证书并部署到阿里云服务器上。 步骤 到OHTTPS官网注册账号 官方地址如下&#xff0c;读者可以先行到官网注册一下账号&#xff0c;笔…

学生管理系统 数据库版

1.写SQL语句 创建school_java数据库 创建student数据表包含 id、name姓名、tel电话、sex性别字段 往student表中加10条数据 2.写Java代码&#xff08;要求只用PreparedStatement对象&#xff0c;变化的值都用?代替&#xff09; 查询student表中所有学生信息 student表中新增三…

Android多国语言翻译 国际化

语言目录详细对应关系 Arabic, Egypt (ar-rEG) —————————–阿拉伯语&#xff0c;埃及 Arabic, Israel (ar-rIL) ——————————-阿拉伯语&#xff0c;以色列 Bulgarian, Bulgaria (bg-rBG) ———————保加利亚语&#xff0c;保加利亚 Catalan, Spain (ca-r…

解决移动端小程序事件穿透的问题

知识点&#xff1a;pointer-events 属性在移动端开发中经常用于处理事件的穿透和响应控制。 下面是对应的场景&#xff1a; 在地图上面写多个小图标&#xff0c;图标位于地图两侧并且都可以点击。要求点击图标时不触发地图的点击事件。如图&#xff1a; 相关代码如下&#xf…

C#串口通讯

在C#写串口通讯小程序时&#xff0c;可以使用System.IO.Ports命名空间提供的SerialPort类。下面是一个简单的例子&#xff0c;包含了一个基本的UI&#xff0c;用于设置串口参数和进行通讯。这里使用了Windows Forms&#xff08;WinForms&#xff09;来创建UI。 步骤&#xff1…

LabelStudio数据标注详细方法

文章目录 情感分析任务Label Studio使用指南1. label-studio 安装2. label-studio 项目创建3. 情感分析任务标注3.1 语句级情感分类任务3.2 属性级情感分析任务3.2.1 属性-情感极性-观点词抽取&#xff08;1&#xff09;Span类型标签&#xff08;2&#xff09;Relation类型标签…

PyTorch: 基于【VGG16】处理MNIST数据集的图像分类任务【准确率98.9%+】

目录 引言在Conda虚拟环境下安装pytorch步骤一&#xff1a;利用代码自动下载mnist数据集步骤二&#xff1a;搭建基于VGG16的图像分类模型步骤三&#xff1a;训练模型步骤四&#xff1a;测试模型运行结果后续模型的优化和改进建议完整代码结束语 引言 在本博客中&#xff0c;小…

antd+vue:tree组件:父级节点禁止选择并不展示选择框——基础积累

antdvue:tree组件&#xff1a;父级节点禁止选择并不展示选择框——基础积累 1.判断哪些是父节点&#xff0c;给父节点添加disabled属性——this.permissionList是数据源2.通过css样式来处理disabled的父节点3.完整代码如下&#xff1a; 最近在写后台管理系统的时候&#xff0c;…

C语言—每日选择题—Day47

第一题 1. 以下逗号表达式的值为&#xff08;&#xff09; (x 4 * 5, x * 5), x 25 A&#xff1a;25 B&#xff1a;20 C&#xff1a;100 D&#xff1a;45 答案及解析 D 本题考查的就是逗号表达式&#xff0c;逗号表达式是依次计算每个表达式&#xff0c;但是只输出最后一个表…

DRF从入门到精通一(DRF介绍、API接口、接口测试工具)

文章目录 DRF入门规范一、Web应用模式1.前后端混合开发模式2.前后端分离开发模式 二、API接口概念Json格式与XML格式的区别前端、前台、后端以及后台的区别 三、接口测试工具&#xff1a;Postman/Apifox DRF入门规范 DRF(django rest framework)是基于django的一个框架&#xf…

文心一言 VS 讯飞星火 VS chatgpt (157)-- 算法导论12.3 4题

四、用go语言&#xff0c;删除操作可交换吗?可交换的含义是&#xff0c;先删除 x 再删除 y 留下的结果树与先除 y 再删除 x 留下的结果树完全一样。如果是&#xff0c;说明为什么? 否则&#xff0c;给出一个反例。 文心一言&#xff1a; 在Go语言中&#xff0c;删除操作是不…

企业信息建设现状

信息化建设是传统计算机与互联网技术高速发展并融合的产物&#xff0c;现阶段已经成为引领产业创新的决定性技术手段。 随着信息化的不断发展与进步&#xff0c;各行各业都开始了信息化的建设与应用。信息化是未来发展的大趋势&#xff0c;企业运用信息技术可以大幅度提高员工效…