前言
构建onnx方式通常有两种:
1、通过代码转换成onnx结构,比如pytorch —> onnx
2、通过onnx 自定义结点,图,生成onnx结构
本文主要是简单学习和使用两种不同onnx结构,
下面以 Clip
结点进行分析
方式
方法一:pytorch --> onnx
暂缓,主要研究方式二
方法二: onnx
import onnx
from onnx import TensorProto, helper, numpy_helper
def run():
print("run start....\n")
Clip = helper.make_node(
"Clip",
name="Clip_0",
inputs=["input", "min_v", "max_v"],
outputs=["output"],
)
initializer = [
helper.make_tensor("min_v", TensorProto.FLOAT, [], [float(0.1)]),
helper.make_tensor("max_v", TensorProto.FLOAT, [], [float(11.1)]),
]
graph = helper.make_graph(
nodes=[Clip],
name="test_graph",
inputs=[helper.make_tensor_value_info(
"input", TensorProto.FLOAT, [1, 3, 2, 2]
)],
outputs=[helper.make_tensor_value_info(
"output",TensorProto.FLOAT, [1, 3, 2, 2]
)],
initializer=initializer,
)
op = onnx.OperatorSetIdProto()
op.version = 11
model = helper.make_model(graph, opset_imports=[op])
print("run done....\n")
return model
if __name__ == "__main__":
model = run()
onnx.save(model, "./test_clip.onnx")
run
import onnx
import onnxruntime
import numpy as np
# 检查onnx计算图
def check_onnx(mdoel):
onnx.checker.check_model(model)
# print(onnx.helper.printable_graph(model.graph))
def run(model):
print(f'run start....\n')
session = onnxruntime.InferenceSession(model,providers=['CPUExecutionProvider'])
input_name1 = session.get_inputs()[0].name
input_data1= np.random.randn(1,3,2,2).astype(np.float32)
print(f'input_data1 shape:{input_data1.shape}\n')
output_name1 = session.get_outputs()[0].name
pred_onx = session.run(
[output_name1], {input_name1: input_data1})[0]
print(f'pred_onx shape:{pred_onx.shape} \n')
print(f'run end....\n')
if __name__ == '__main__':
path = "./test_clip.onnx"
model = onnx.load("./test_clip.onnx")
check_onnx(model)
run(path)