2019年第八届数学建模国际赛小美赛B题数据中心冷出风口的设计解题全过程文档及程序

2019年第八届数学建模国际赛小美赛

B题 数据中心冷出风口的设计

原题再现:

  这是数据中心空调设计面临的一个问题。在一些数据中心,计算机机柜是开放的,在一个房间里排列成三到四排。冷却后的空气通过主管进入房间,并分为三到四个支管。支管的出口只能放在天花板上,向下吹,热空气从房间一侧的热空气安全壳中排出。每个支管的出口不应超过三个1。由于冷空气和热空气的混合,冷空气的利用效率降低。因此,我们需要考虑空气流量,以减少走廊和缝隙中浪费的制冷量。

  我们需要考虑天花板的高度、橱柜的高度以及不同橱柜的典型热输出。我们假设空调的总制冷量能够满足机房的运行要求。当我们确定机柜的布局时,如何设置空调出风口的位置是最好的解决方案?
在这里插入图片描述

整体求解过程概述(摘要)

  数据通信机房是一个巨大的耗能系统。近年来,随着网络通信技术的飞速发展,在机房的建设和改造过程中,面临着许多能源和安全问题。为了保证数据通信机房的高效冷却和安全运行的重要保证,运营商希望在正常工作的前提下改善机房内的气流组织,并在消除可能的安全隐患的前提下,将散热、功耗降至最低。针对此类工程应用问题,本文对机房空调配置及运行状况进行了综合评价。基于ANSYS的icepak模块,成功构建了机房内部温度场和气流方向,建立了机房数学模型,模拟了机房温度场。对数据通信机房的分布状况、冷负荷核算、实验设计和优化进行了研究。最后,建立筛选软件,提供不同的冷却方案。

  首先分析了机房的俯视图、侧视图和主视图,并在每个视图中设置了敏感区域和路径的特殊点。由于机房内的温度随时间呈线性变化,但随位置变化具有明显的区域性特征,为了能够简单地获得温度情况,可以对机房内的温度变化进行有限元模拟,在仿真结果中可以方便地得到特殊点的温度。在设定的路径上进行曲线拟合,得到温度随位置变化的函数。由于计算机室内的空间是特定的,通过在所有空间中依次设置路径,可以很容易地检测到空间中的任何位置的温度变化。然后对温度进行时间积分,得到热的变化。

模型假设:

  1、各种材料的导热系数是恒定的,不随时间变化。
  2、各出风口风量始终相同。
  3、各风口风速为固定值。
  4、假设不存在能源浪费(冷水机组效率为100%),达到机房设定温度所需的冷量为合理的参考冷负荷。
  5、假设日常空调运行前机房内外温度相同。
  6、假设机房电气设备冷负荷全年不变。
  7、假设房间位置的温度是恒定的。
  8、忽略空调内部水管阻力和自身能耗。
  9、假设出风口位置、底盘高度、室内吊顶高度、底盘类型为自变量。
  10、假设底盘随高度增加,热量均匀增加。

问题分析:

  由于支管的位置只能放在顶棚上,风冷气体只能从顶棚吹出,在顶棚处可以改变冷却气体的出口位置,以达到最佳的冷却效果。对于不同类型的出风口位置,可设置不同类型的机柜放电。由于从天花板吹来的冷却气体密度较高,部分气体与走廊和缝隙中的热风混合,消耗不必要的冷却,不会显著降低机柜的热量。这部分气体理论上需要实现。增加冷却效率的最小值。
  由于机柜的高度将直接影响机柜中服务器的数量,从而影响总产热量,因此机柜的高度对提高冷却效率起着重要作用。由于重力的下降,从天花板上的冷却气体出口吹出的冷却气体在不同高度会产生不同的影响。在最高空气温度下,冷却气体的密度高于冷却气体的密度,且冷却气体的下降速度较快。在逐渐下降的过程中,由于机柜释放的热量的影响,一些较热的气体和冷却气体混合,使冷却气体的温度逐渐上升和下降。冷却气体吸收并混合底盘在干燥垂直方向释放的所有热量,由于冷却气体的温升和温降速率,这部分气体的温度达到最大值。升温气体继续上升,为保证带走底盘热量的冷却气体能及时排出室外,冷却气体出口应尽量远离出口风口,以便及时带走底盘热量,但此时,离冷却口最远的机柜会因为少量冷却而达到非常高的温度。另外,由于不同的散热方式和不同机柜的散热方式不同,周围空气的热传导也不同,因此不同类型的机柜对散热也有重要影响。
  为了说明这一问题,本文设置了两组实验。第一组实验在风口在吊顶上位置固定的情况下,确定影响室内总冷量的主要因素,并采用显著性检验确定影响室内总冷量的主要因素。通过检验,计算显著性系数,粗略确定影响因素权重,建立底盘高度、室内吊顶高度与底盘类型之间的函数关系。第二组测试在确定箱体高度、室内天花板高度和底盘类型之间作为变量的函数关系的基础上,重置天花板上出风口的位置。

模型的建立与求解整体论文缩略图

在这里插入图片描述

在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

function main() 
clc % clear screen 
clear all; % clear memory armor to speed up computing 
close all; % current figure images 
warning off; % mask does not have the necessary warning 
SamNum=20; % input sample number is 20 
TestSamNum=20; % test sample size is 20 
ForcastSamNum=2;% predicted sample size is 2 
HiddenUnitNum=8;% in the middle layer the number of hidden layers is 8 
InDim=3; % network input dimension is 3 
OutDim=2; % network output size is 2 
 
% Raw data 
% 
sqrs=[0.46 0.46 0.46 0.44 0.44 0.44
0.35 0.50 0.50 0.48 0.48 0.47
0.30 0.55 0.52 0.45 0.50 0.45
0.23 0.59 0.55 0.46 0.53 0.40]; 
% 
sqjdcs=[0.520.52 0.48 0.48 0.48
0.56 0.55 0.49 0.55 0.54
0.59 0.59 0.58 0.58 0.55
0.61 0.65 0.61 0.59 0.59
0.63 0.68 0.62 0.62 0.62]; 
sqglmj=[0.52 0.52 0.48 0.48 0.48
0.56 0.55 0.49 0.55 0.54
0.59 0.59 0.58 0.58 0.55
0.61 0.65 0.61 0.59 0.59
0.63 0.68 0.62 0.62 0.62]; 
% 
glkyl=[0.52 0.52 0.48 0.48 0.48
0.56 0.55 0.49 0.55 0.54
0.59 0.59 0.58 0.58 0.55
0.61 0.65 0.61 0.59 0.59
0.63 0.68 0.62 0.62 0.62]; 
% 
glhyl=[0.45 0.45 0.45 0.55 0.55 0.55
0.42 0.50 0.55 0.56 0.59 0.58
0.40 0.52 0.58 0.61 0.62 0.62
0.38 0.54 0.61 0.60 0.64 0.61
0.35 0.59 0.64 0.61 0.65 0.63]; 
 
p=[sqrs;sqjdcs;sqglmj]; % input data matrixt 
t=[glkyl;glhyl]; % target data matrix 
[SamIn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % Initial sample pair (input and output) initialization 
 
rand('state',sum(100*clock)); % Generate random numbers based on system clock seeds 
NoiseVar=0.01; % noise intensity is 0.01 (the purpose of adding noise is to prevent network overfitting)
Noise=NoiseVar*randn(2,SamNum); % Generate noise 
SamOut=tn+Noise; % Add noise to the output sample 
 
TestSamIn=SamIn; % The input sample is the same as the test sample because the sample size is too small 
TestSanOut=SamOut; % The output sample is the same as the test sample 
 
MaxEpochs=50000; % Maximum training times is 50000 
lr=0.035; % Learning rate is 0.035 
E0=0.65*10^(-3); % Target error is 0.65*10^(-3) 
W1=0.5*rand(HiddenUnitNum,InDim)-0.1;% Initializes the weight between the input layer and the hidden layer 
B1=0.5*rand(HiddenUnitNum,1)-0.1;% Initializes the weight between the input layer and the hidden layer 
W2=0.5*rand(OutDim,HiddenUnitNum)-0.1;% Initializes the weight between the output layer and the hidden layer 
B2=0.5*rand(OutDim,1)-0.1;% Initialize the weight between the output layer and the hidden layer 
ErrHistory=[]; % Pre-occupies memory for intermediate variables 
for i=1:MaxEpochs 
 HiddenOut=logsig(W1*SamIn+repmat(B1,1,SamNum)); % Hidden layer network output 
 NetworkOut=W2*HiddenOut+repmat(B2,1,SamNum); % Output layer network output 
 Error=SamOut-NetworkOut; % The difference between the actual output and the network output 
 SSE=sumsqr(Error); % Energy function (square of error) 
 ErrHistory=[ErrHistory SSE]; 
 if SSE<E0,break,end % Jump out of the learning loop if the error is met 
 
 % The following 6 lines are the core programs of the BP network 
 % They are weights (values) dynamically adjusted for each step according to the energy function negative gradient descent 
principle 
 Delta2=Error; 
 Delta1=W2'*Delta2.*HiddenOut.*(1-HiddenOut); 
 % Correct the weights and thresholds between the output layer and the hidden layer 
 dW2=Delta2*HiddenOut'; 
 dB2=Delta2*ones(SamNum,1); 
% Correct the weights and thresholds between the input layer and the hidden layer
 dW1=Delta1*SamIn'; 
 dB1=Delta1*ones(SamNum,1); 
 
 W2=W2+lr*dW2; 
 B2=B2+lr*dB2; 
 
 W1=W1+lr*dW1; 
 B1=B1+lr*dB1; 
 
end 
 
HiddenOut=logsig(W1*SamIn+repmat(B1,1,TestSamNum)); % Implicit layer output prediction 
NetworkOut=W2*HiddenOut+repmat(B2,1,TestSamNum); % Output layer output prediction result 
a=postmnmx(NetworkOut,mint,maxt); % Restore the results of the network output layer 
x=1990:2009; % Timeline scale 
newk=a(1,:); % Network output passenger traffic 
newh=a(2,:); % Network output freight volume 
figure; 
subplot(2,1,1);plot(x,newk,'r-o',x,glkyl,'b--+'); 
legend('network output', 'actual amount'); 
xlabel('Year'); ylabel('Passenger traffic / 10,000 people'); 
title('Source program neural network passenger traffic learning and test comparison chart'); 
 
subplot(2,1,2);plot(x,newh,'r-o',x,glhyl,'b--+'); % Drawing a comparison chart
legend('network output', 'actual amount'); 
xlabel('Year'); ylabel('Passenger traffic / 10,000 people'); 
title(' source program neural network freight volume learning and test comparison chart '); 
 
% Use trained data for forecasting 
% When using the trained network to predict the new data pnew, it should also be processed 
pnew=[73.39 75.55 
 3.9635 4.0975 
 0.9880 1.0268]; % 2018 related data 
pnewn=tramnmx(pnew,minp,maxp); %normalizes the new data using the normalized parameters of the original input data 
HiddenOut=logsig(W1*pnewn+repmat(B1,1,ForcastSamNum)); % 
anewn=W2*HiddenOut+repmat(B2,1,ForcastSamNum); % 
% Restore the network predicted data to the original order of magnitude 
format short 
anew=postmnmx(anewn,mint,maxt)
Differential Evolution Algorithm MATLAB Source Code
N = 20; %set population
F = 0.5; %sets the differential scaling factor
P_cr = 0.5; %sets the crossover probability
T = 300; %sets the maximum number of iterations
f = @(x,y) -20.*exp(-0.2.*sqrt((x.^2+y.^2)./2))-exp((cos(2.*pi.*x)+cos(2.*pi.*y))./2)+20+exp(1); % defines the objective function
%population initialization
population = -4 + rand(N,2).*8;
t = 0; % algebra initialization
%starts iteration
while t < T
 % variation
 H_pop = [];
 for i = 1:N
 index = round(rand(1,3).*19)+1;
 add_up = population(index(1),:) + F.*(population(index(2),:)-population(index(3),:));
 H_pop = [H_pop; add_up];
 end
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/245748.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

聚观早报 |iOS17.3引入设备被盗保护;iPhone16或调整设计

【聚观365】12月14日消息 iOS17.3引入设备被盗保护 iPhone16或调整设计 马斯克星链网络使用量飙升 华为鸿蒙智行App正式上线 特斯拉人形机器人Optimus二代上线 iOS17.3引入设备被盗保护 苹果向iPhone用户推送了iOS17.3开发者预览版Beta更新&#xff0c;本次更新距离上次发…

【贝叶斯分析】计算机科学专业博士作业二

1 第一题 1.1 题目 已知变量A和B的取值只能为0或1&#xff0c;A⫫&#x1d469;&#xff0c;且&#x1d45d;(&#x1d434;1)0.65&#xff0c;&#x1d45d;(&#x1d435;1)0.77。C的取值与A和B有关&#xff0c;具体关系如下图所表&#xff1a; ABP(C1|A,B)000.1010.99100…

Android其他组件(单选框)

一、单选框&#xff08;RadioGroup&#xff09; 单选框&#xff08;RadioGroup&#xff09;需要配合单选按钮&#xff08;RadioButton&#xff09;使用&#xff0c;同一个单选框中的单选按钮只能被选中一个&#xff0c;默认是一个都不选中。 RadioGroup的常见属性&#xff08…

[Linformer]论文实现:Linformer: Self-Attention with Linear Complexity

文章目录 一、完整代码二、论文解读2.1 介绍2.2 Self-Attention is Low Rank2.3 模型架构2.4 结果 三、整体总结 论文&#xff1a;Linformer: Self-Attention with Linear Complexity 作者&#xff1a;Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, Hao Ma 时间&#…

修复录制异常终止导致的 MP4 文件损坏(moov atom not found)

如果录制视频时异常退出&#xff08;蓝屏死机、程序崩溃等&#xff09;&#xff0c;会导致录制的 MP4 文件损坏无法打开。 在这里简单记录一下解决方法。 1 首先尝试用 ffmpeg。运行 ffmpeg -i <损坏文件> -c copy <输出路径>看看能不能正常运行。 如果不能&am…

【Linux】信号--信号初识/信号的产生方式/信号的保存

文章目录 一、信号初步理解1.生活角度的信号2.技术应用角度的信号 二、信号的产生方式1.通过终端按键产生信号2.调用系统函数向进程发信号3.硬件异常产生信号4.由软件条件产生信号5.进程退出时的核心转储问题 三、信号的保存1.信号其他相关常见概念2.信号在内核中的表示3.sigse…

vue实现滑动验证

效果图&#xff1a; 源码地址&#xff1a;github文档地址&#xff1a; https://github.com/monoplasty/vue-monoplasty-slide-verify 使用步骤&#xff1a;1&#xff0c;安装插件&#xff1a; npm install --save vue-monoplasty-slide-verify 在main.js中使用一下&#xff…

HTML---初识CSS

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 一.CSS概念 CSS是层叠样式表&#xff08;Cascading Style Sheets&#xff09;的缩写。它是一种用于描述HTML文档外观样式的标记语言。通过CSS&#xff0c;开发者可以在不改变HTML标记结构的情况…

尚硅谷Docker笔记-高级篇

1.Docker复杂安装 1.1安装mysql主从复制搭建步骤 1.新建主服务器容器实例3307 docker run -p 3307:3306 --name mysql-master \ -v /mydata/mysql-master/log:/var/log/mysql \ -v /mydata/mysql-master/data:/var/lib/mysql \ -v /mydata/mysql-master/conf:/etc/mysql \ -…

运筹学经典问题(六):设施选址问题

问题描述 设施选址问题&#xff08;Facility Location Problem, FLP&#xff09;也成选址-分配问题&#xff0c;是企业面临的一类重要问题&#xff1a;在哪里建造设施&#xff1f;建造多少&#xff1f;以及将哪些客户分配给哪些设施去服务&#xff1f; 以物流业的航空站点选…

华为云sp2服务器系统根分区扩容后重启失败解决

lvm根分区扩容 概念&#xff1a; PV&#xff08;物理卷&#xff1a;Physical Volumes&#xff09; VG&#xff08;物理卷组&#xff1a;Volume Group&#xff09; LV&#xff08;逻辑卷&#xff1a;Logical Volumes&#xff09; R系 V10服务器&#xff1a; 显示当前Logic…

实验5:NAT配置

1.实验目的&#xff1a; 了解NAT的基本概念和功能 掌握NAT的配置方法和命令 观察和分析NAT的工作原理和流程 2.实验内容&#xff1a; 在路由器上配置静态NAT&#xff0c;实现内网主机通过公网IP地址访问外网服务器在路由器上配置动态NAT&#xff0c;实现内网主机通过公网I…

华为配置本地端口镜像示例(1:1)

图1 配置本地端口镜像组网图 组网需求 如图1所示&#xff0c;某公司行政部通过Switch与外部Internet通信&#xff0c;监控设备Server与Switch直连。 现在希望通过Server对行政部访问Internet的流量进行监控 配置思路 在Switch进行如下配置&#xff0c;实现Server对所有行政…

RHEL8_Linux下载ansible

本章内容主要介绍RHEL8中如何安装ansible ansible时如何工作的在RHEL8中安装ansible 1.ansible工作原理 如果管理的服务器很多&#xff0c;如几十台甚至几百台&#xff0c;那么就需要一个自动化管理工具了&#xff0c;ansible就是这样的一种自动化管理工具。 1&…

智能优化算法应用:基于黏菌算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于黏菌算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于黏菌算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.黏菌算法4.实验参数设定5.算法结果6.参考文献7.MA…

黑马点评03一人一单

实战篇-07.优惠券秒杀-实现一人一单功能_哔哩哔哩_bilibili 1.之前的问题 虽然解决了超卖问题&#xff0c;但是无法保证一人只能买一张&#xff0c;容易发生黄牛行为。 2.解决方案 2.1订单查询&#xff1a;判断该用户是否已下单 在库存判断之前&#xff0c;判断用户id和优惠…

Mac中nvm切换node版本失败

Mac中使用 nvm 管理 node 版本&#xff0c;在使用指令&#xff1a;nvm use XXX 切换版本之后。 关闭终端&#xff0c;再次打开&#xff0c;输入 node -v 还是得到之前的 node 版本。 原因&#xff1a; 在这里这个 default 中有个 node 的版本号&#xff0c;使用 nvm use 时&a…

想要在电脑桌面上使用手机便签怎么操作?

作为一名上班族&#xff0c;我们时常需要在电脑和手机之间同步使用便签&#xff0c;以记录工作、生活中的重要事项。然而&#xff0c;有些时候我们可能更习惯在手机上使用便签&#xff0c;但又希望在电脑桌面上也能够方便地查看和编辑这些便签。那么&#xff0c;如何在电脑桌面…

算法:存在重复元素 II (哈希表和滑动窗口)

哈希表 时间复杂度 O(n) 空间复杂度 O(n) /*** param {number[]} nums* param {number} k* return {boolean}*/ var containsNearbyDuplicate function (nums, k) {let map new Map()for (let [index, item] of nums.entries()) {if (!map.has(item)) {map.set(item, index)…

被带偏的中国云计算,重归正途

文 | 智能相对论 作者 | 叶远风 阿里云战略聚焦公共云&#xff0c;对整个云计算市场而言都是一场自我审视。 从市场背景、行业发展、中外对比等多个方面&#xff0c;业界舆论给出了大量详实的数据分析&#xff0c;已经对阿里云为什么要聚焦公共云有了结论&#xff0c;这里不…