智能优化算法应用:基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于蝠鲼觅食算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.蝠鲼觅食算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用蝠鲼觅食算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.蝠鲼觅食算法

蝠鲼觅食算法原理请参考:https://blog.csdn.net/u011835903/article/details/112390588
蝠鲼觅食算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


蝠鲼觅食算法参数如下:

%% 设定蝠鲼觅食优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明蝠鲼觅食算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/245705.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

R语言【rgbif】——什么是多值传参?如何在rgbif中一次性传递多个值?多值传参时的要求有哪些?

rgbif版本:3.7.8.1 什么是多值传参? 您是否在使用rgbif时设想过,给某个参数一次性传递许多个值,它将根据这些值独立地进行请求,各自返回独立的结果。 rgbif支持这种工作模式,但是具体的细节需要进一步地…

Unity Web 浏览器-3D WebView中有关于CanvasWebViewPrefab

一、CanvasWebViewPrefab默认设置 这个是在2_CanvasWebViewDemo示例场景文件中可以可以查看得到,可以看出CanvasWebViewPrefab的默认配置如下。 二、Web 浏览器网页和Unity内置UI的渲染顺序 1、如果你勾选了以下这个Native 2D Mode选项的话,那么Unit…

广州华锐互动:VR煤矿特殊工种作业实训帮助提高矿工的操作技能和安全意识

VR煤矿特殊工种作业实训系统为煤矿企业培训提供了全方位的支持,帮助提高矿工的操作技能和安全意识,促进煤矿企业的安全生产。 首先,VR煤矿特殊工种作业实训系统可以提供逼真的虚拟操作环境,使矿工能够身临其境地感受各种工种的作业…

案例058:基于微信小程序的智能社区服务管理系统

文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…

缓存穿透问题与解决方案

目录 引言 1. 缓存穿透的原因 1.1 不存在的数据请求 1.2 缓存键设计不当 2. 缓存穿透的影响 2.1 后端系统负载过重 2.2 数据库压力增大 2.3 用户体验降低 3. 解决缓存穿透的方案 3.1 布隆过滤器 3.2 缓存空对象 3.3 热点数据预加载 3.4 异步更新缓存 3.5 缓存击穿…

如何编写好的测试用例?

对于软件测试工程师来说,设计测试用例和提交缺陷报告是最基本的职业技能。是非常重要的部分。一个好的测试用例能够指示测试人员如何对软件进行测试。在这篇文章中,我们将介绍测试用例设计常用的几种方法,以及如何编写高效的测试用例。 一、…

Axure->Axure安装,Axure菜单栏和工具栏功能介绍,页面及概要区

目录 一.项目的全周期 二.产品经理的介绍 三.Axure安装 四.Axure的基本使用 1.Axure菜单栏和工具栏功能介绍,页面及概要区 一.项目的全周期 二.产品经理的介绍 同时做五个项目,每个项目100w,一个项目成本需要50-60w,那么五个…

汽车清除积碳和清洗节气门

汽车清除积碳和清洗节气门 汽车需要清除积碳的部位检查积碳方法: 清除积碳和清洗节气门风险:燃油宝 第一次清除积碳1万公里2万公里3万公里--5万公里6万公里以上 汽车需要清除积碳的部位 节气门喷油嘴进气道燃烧室 检查积碳方法: 建议每3到5…

react-router-dom 在 React Hook 中的常用组合拳

React Router DOM 是一个用于在 React 应用中实现路由功能的库。它提供了一组组件和钩子,可以帮助我们管理应用的导航和路由,结合 React Hook 的使用可以使我们的代码更加简洁和易于维护。 使用版本:"react-router-dom": "^6.…

SLAM算法与工程实践——相机篇:传统相机使用(2)

SLAM算法与工程实践系列文章 下面是SLAM算法与工程实践系列文章的总链接,本人发表这个系列的文章链接均收录于此 SLAM算法与工程实践系列文章链接 下面是专栏地址: SLAM算法与工程实践系列专栏 文章目录 SLAM算法与工程实践系列文章SLAM算法与工程实践…

从计算机底层深入Golang高并发

从计算机底层深入Golang高并发 1.源码流程架构图 2.源码解读 runtime/proc.go下的newpro() func newproc(fn *funcval) {//计算额外参数的地址argpgp : getg()pc : getcallerpc()//s1使用systemstack调用newproc1 systemstack(func() {newg : newproc1(fn, gp, pc)_p_ : getg…

web前端之正弦波浪动功能、repeat、calc

MENU 效果图htmlstylecalcrepeat 效果图 html <div class"grid"><span class"line"></span><span class"line"></span><span class"line"></span><span class"line"><…

[开源更新] 企业级身份管理和访问管理系统、为数字身份安全赋能

一、系统简介 名称&#xff1a;JNPF权限管理系统 JNPF 权限管理系统可用于管理企业内员工账号、权限、身份认证、应用访问等&#xff0c;可整合部署在本地或云端的内部办公系统、业务系统及第三方 SaaS 系统的所有身份&#xff0c;实现一个账号打通所有应用的服务。其有如下几…

C# OpenVINO 直接读取百度模型实现印章检测

目录 效果 模型信息 项目 代码 下载 其他 C# OpenVINO 直接读取百度模型实现印章检测 效果 模型信息 Inputs ------------------------- name&#xff1a;scale_factor tensor&#xff1a;F32[?, 2] name&#xff1a;image tensor&#xff1a;F32[?, 3, 608, 608] …

oracle aq java jms使用(数据类型为XMLTYPE)

记录一次冷门技术oracle aq的使用 版本 oracle 11g 创建用户 -- 创建用户 create user testaq identified by 123456; grant connect, resource to testaq;-- 创建aq所需要的权限 grant execute on dbms_aq to testaq; grant execute on dbms_aqadm to testaq; begindbms_a…

吴恩达《机器学习》12-2-12-3:大边界的直观理解、大边界分类背后的数学

一、大边界的直观理解 1. 大间距分类器的背景 支持向量机的大间距分类器着眼于构建一个能够在正负样本之间划定最大间距的决策边界。为了理解这一点&#xff0c;首先观察支持向量机的代价函数&#xff0c;其中涉及到正负样本的代价函数cos&#x1d461;1(&#x1d467;)和cos…

【Qt QML入门】Button

Button表示一个推按钮控件&#xff0c;用户可以按下或单击它。 import QtQuick import QtQuick.Window import QtQuick.ControlsWindow {id: winwidth: 800height: 600visible: truetitle: qsTr("Hello World")Button {id: btnwidth: 200height: 100anchors.centerIn…

[笔记] iperf3.1.3源码下载与交叉编译

由于需要测试一款40G网卡&#xff0c;下载了 iperf3.1.3 用于性能测试。 iperf3.1.3 源码下载 可以在 iperf 官网 下载源代码&#xff1a; 交叉编译 需要运行在 aarch64 linux 环境下&#xff0c;所以需要交叉编译。 进入iperf3 目录下&#xff0c;运行 ./configure 脚本…

JavaWeb之前端三件套

前端三件套 HTML1、入门程序2、HTML概念词汇解释3、常见标签3.1 标题标签3.2 段落标签3.3 换行标签3.4 列表标签3.5 超链接标签3.6 多媒体标签3.7 表格标签&#xff08;重点&#xff09;3.8 表单标签(重点)3.9 常见表单项标签(重点)3.10 布局相关标签 CSS1、CSS引入方式2、CSS引…

【Java】线程池的创建

目录 ​编辑 一、什么是线程池 二、创建和使用 导入必要的包&#xff1a; 创建线程池&#xff1a; 提交任务给线程池执行&#xff1a; 自定义Runnable和Callable任务&#xff1a; 关闭线程池&#xff1a; 我的其他博客 一、什么是线程池 在Java中&#xff0c;线程池是…