从计算机底层深入Golang高并发

从计算机底层深入Golang高并发

1.源码流程架构图

在这里插入图片描述

2.源码解读

runtime/proc.go下的newpro()


func newproc(fn *funcval) {
   //计算额外参数的地址argp
   gp := getg()
   pc := getcallerpc()
   //s1使用systemstack调用newproc1 
   systemstack(func() {
      newg := newproc1(fn, gp, pc)

      _p_ := getg().m.p.ptr()
      //s1将放到运行队列 
      runqput(_p_, newg, true)
      //s1 主是否启动,是否唤醒
      if mainStarted {
         wakep()
      }
   })
}

func newproc1(fn *funcval, callergp *g, callerpc uintptr) *g {
    //调用getg获取当前的g,会编译为讯取FS寄存器(TLS),这里会获到g
	_g_ := getg()

	if fn == nil {
		_g_.m.throwing = -1 // do not dump full stacks
		throw("go of nil func value")
	}
    //禁用抢咪,因为它可以在本地var中保存p,进入可见 设g对应的m的locks++
	acquirem() // disable preemption because it can be holding p in a local var

    //获取m拥有的p
	_p_ := _g_.m.p.ptr()
    //新建一个g
	newg := gfget(_p_)
	if newg == nil {
		newg = malg(_StackMin)
		casgstatus(newg, _Gidle, _Gdead)
		allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
	}
	if newg.stack.hi == 0 {
		throw("newproc1: newg missing stack")
	}

	if readgstatus(newg) != _Gdead {
		throw("newproc1: new g is not Gdead")
	}

	totalSize := uintptr(4*goarch.PtrSize + sys.MinFrameSize) // extra space in case of reads slightly beyond frame
	totalSize = alignUp(totalSize, sys.StackAlign)
	sp := newg.stack.hi - totalSize
	spArg := sp
	if usesLR {
		// caller's LR
		*(*uintptr)(unsafe.Pointer(sp)) = 0
		prepGoExitFrame(sp)
		spArg += sys.MinFrameSize
	}
	
    //设置g的调度
	memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
	newg.sched.sp = sp
	newg.stktopsp = sp
	newg.sched.pc = abi.FuncPCABI0(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function
	newg.sched.g = guintptr(unsafe.Pointer(newg))
	gostartcallfn(&newg.sched, fn)
	newg.gopc = callerpc
	newg.ancestors = saveAncestors(callergp)
	newg.startpc = fn.fn
	if isSystemGoroutine(newg, false) {
		atomic.Xadd(&sched.ngsys, +1)
	} else {
		// Only user goroutines inherit pprof labels.
		if _g_.m.curg != nil {
			newg.labels = _g_.m.curg.labels
		}
	}
	// Track initial transition?
	newg.trackingSeq = uint8(fastrand())
	if newg.trackingSeq%gTrackingPeriod == 0 {
		newg.tracking = true
	}
    //设置g的状态为待运行
	casgstatus(newg, _Gdead, _Grunnable)
	gcController.addScannableStack(_p_, int64(newg.stack.hi-newg.stack.lo))

	if _p_.goidcache == _p_.goidcacheend {
		// Sched.goidgen is the last allocated id,
		// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
		// At startup sched.goidgen=0, so main goroutine receives goid=1.
		_p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)
		_p_.goidcache -= _GoidCacheBatch - 1
		_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
	}
	newg.goid = int64(_p_.goidcache)
	_p_.goidcache++
	if raceenabled {
		newg.racectx = racegostart(callerpc)
	}
	if trace.enabled {
		traceGoCreate(newg, newg.startpc)
	}
	releasem(_g_.m)

	return newg
}

func main() {
	g := getg() //获取g

	// Racectx of m0->g0 is used only as the parent of the main goroutine.
	// It must not be used for anything else.
	g.m.g0.racectx = 0

	// Max stack size is 1 GB on 64-bit, 250 MB on 32-bit.
	// Using decimal instead of binary GB and MB because
	// they look nicer in the stack overflow failure message.
	if goarch.PtrSize == 8 {
		maxstacksize = 1000000000
	} else {
		maxstacksize = 250000000
	}

	// An upper limit for max stack size. Used to avoid random crashes
	// after calling SetMaxStack and trying to allocate a stack that is too big,
	// since stackalloc works with 32-bit sizes.
	maxstackceiling = 2 * maxstacksize

	// 标记主函数已调用.
    mainStarted = true
	//判断是否已就绪
	if GOARCH != "wasm" { // no threads on wasm yet, so no sysmon
		systemstack(func() {
			newm(sysmon, nil, -1)
		})
	}

	// Lock the main goroutine onto this, the main OS thread,
	// during initialization. Most programs won't care, but a few
	// do require certain calls to be made by the main thread.
	// Those can arrange for main.main to run in the main thread
	// by calling runtime.LockOSThread during initialization
	// to preserve the lock.
	lockOSThread()

	if g.m != &m0 {
		throw("runtime.main not on m0")
	}

	// Record when the world started.
	// Must be before doInit for tracing init.
	runtimeInitTime = nanotime()
	if runtimeInitTime == 0 {
		throw("nanotime returning zero")
	}

	if debug.inittrace != 0 {
		inittrace.id = getg().goid
		inittrace.active = true
	}
	//初始化
	doInit(&runtime_inittask) // Must be before defer.

	// Defer unlock so that runtime.Goexit during init does the unlock too.
	needUnlock := true
	defer func() {
		if needUnlock {
			unlockOSThread()
		}
	}()

	gcenable()

	main_init_done = make(chan bool)
	if iscgo {
		if _cgo_thread_start == nil {
			throw("_cgo_thread_start missing")
		}
		if GOOS != "windows" {
			if _cgo_setenv == nil {
				throw("_cgo_setenv missing")
			}
			if _cgo_unsetenv == nil {
				throw("_cgo_unsetenv missing")
			}
		}
		if _cgo_notify_runtime_init_done == nil {
			throw("_cgo_notify_runtime_init_done missing")
		}
		// Start the template thread in case we enter Go from
		// a C-created thread and need to create a new thread.
		startTemplateThread()
		cgocall(_cgo_notify_runtime_init_done, nil)
	}

	doInit(&main_inittask)

	// Disable init tracing after main init done to avoid overhead
	// of collecting statistics in malloc and newproc
	inittrace.active = false

	close(main_init_done)

	needUnlock = false
	unlockOSThread()

	if isarchive || islibrary {
		// A program compiled with -buildmode=c-archive or c-shared
		// has a main, but it is not executed.
		return
	}
    //进行间接调用
	fn := main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
	fn()
	if raceenabled {
		racefini()
	}

	// Make racy client program work: if panicking on
	// another goroutine at the same time as main returns,
	// let the other goroutine finish printing the panic trace.
	// Once it does, it will exit. See issues 3934 and 20018.
	if atomic.Load(&runningPanicDefers) != 0 {
		// Running deferred functions should not take long.
		for c := 0; c < 1000; c++ {
			if atomic.Load(&runningPanicDefers) == 0 {
				break
			}
			Gosched()
		}
	}
	if atomic.Load(&panicking) != 0 {
		gopark(nil, nil, waitReasonPanicWait, traceEvGoStop, 1)
	}

	exit(0)
	for {
		var x *int32
		*x = 0
	}
}

func sysmon() {
	lock(&sched.lock)
	sched.nmsys++
	checkdead()
	unlock(&sched.lock)

	lasttrace := int64(0)
	idle := 0 // how many cycles in succession we had not wokeup somebody
	delay := uint32(0)

	for {
		if idle == 0 { // start with 20us sleep...
			delay = 20
		} else if idle > 50 { // start doubling the sleep after 1ms...
			delay *= 2
		}
		if delay > 10*1000 { // up to 10ms
			delay = 10 * 1000
		}
		usleep(delay)

		// sysmon should not enter deep sleep if schedtrace is enabled so that
		// it can print that information at the right time.
		//
		// It should also not enter deep sleep if there are any active P's so
		// that it can retake P's from syscalls, preempt long running G's, and
		// poll the network if all P's are busy for long stretches.
		//
		// It should wakeup from deep sleep if any P's become active either due
		// to exiting a syscall or waking up due to a timer expiring so that it
		// can resume performing those duties. If it wakes from a syscall it
		// resets idle and delay as a bet that since it had retaken a P from a
		// syscall before, it may need to do it again shortly after the
		// application starts work again. It does not reset idle when waking
		// from a timer to avoid adding system load to applications that spend
		// most of their time sleeping.
		now := nanotime()
		if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) {
			lock(&sched.lock)
			if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) {
				syscallWake := false
				next, _ := timeSleepUntil()
				if next > now {
					atomic.Store(&sched.sysmonwait, 1)
					unlock(&sched.lock)
					// Make wake-up period small enough
					// for the sampling to be correct.
					sleep := forcegcperiod / 2
					if next-now < sleep {
						sleep = next - now
					}
					shouldRelax := sleep >= osRelaxMinNS
					if shouldRelax {
						osRelax(true)
					}
					syscallWake = notetsleep(&sched.sysmonnote, sleep)
					if shouldRelax {
						osRelax(false)
					}
					lock(&sched.lock)
					atomic.Store(&sched.sysmonwait, 0)
					noteclear(&sched.sysmonnote)
				}
				if syscallWake {
					idle = 0
					delay = 20
				}
			}
			unlock(&sched.lock)
		}

		lock(&sched.sysmonlock)
		// Update now in case we blocked on sysmonnote or spent a long time
		// blocked on schedlock or sysmonlock above.
		now = nanotime()

		// trigger libc interceptors if needed
		if *cgo_yield != nil {
			asmcgocall(*cgo_yield, nil)
		}
		// poll network if not polled for more than 10ms
		lastpoll := int64(atomic.Load64(&sched.lastpoll))
		if netpollinited() && lastpoll != 0 && lastpoll+10*1000*1000 < now {
			atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
			list := netpoll(0) // non-blocking - returns list of goroutines
			if !list.empty() {
				// Need to decrement number of idle locked M's
				// (pretending that one more is running) before injectglist.
				// Otherwise it can lead to the following situation:
				// injectglist grabs all P's but before it starts M's to run the P's,
				// another M returns from syscall, finishes running its G,
				// observes that there is no work to do and no other running M's
				// and reports deadlock.
				incidlelocked(-1)
				injectglist(&list)
				incidlelocked(1)
			}
		}
		if GOOS == "netbsd" && needSysmonWorkaround {
			// netpoll is responsible for waiting for timer
			// expiration, so we typically don't have to worry
			// about starting an M to service timers. (Note that
			// sleep for timeSleepUntil above simply ensures sysmon
			// starts running again when that timer expiration may
			// cause Go code to run again).
			//
			// However, netbsd has a kernel bug that sometimes
			// misses netpollBreak wake-ups, which can lead to
			// unbounded delays servicing timers. If we detect this
			// overrun, then startm to get something to handle the
			// timer.
			//
			// See issue 42515 and
			// https://gnats.netbsd.org/cgi-bin/query-pr-single.pl?number=50094.
			if next, _ := timeSleepUntil(); next < now {
				startm(nil, false)
			}
		}
		if atomic.Load(&scavenge.sysmonWake) != 0 {
			// Kick the scavenger awake if someone requested it.
			wakeScavenger()
		}
		 // S1重新获取系统调用中阻塞的P,点长时间运行的G
		if retake(now) != 0 {
			idle = 0
		} else {
			idle++
		}
		// check if we need to force a GC
		if t := (gcTrigger{kind: gcTriggerTime, now: now}); t.test() && atomic.Load(&forcegc.idle) != 0 {
			lock(&forcegc.lock)
			forcegc.idle = 0
			var list gList
			list.push(forcegc.g)
			injectglist(&list)
			unlock(&forcegc.lock)
		}
		if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now {
			lasttrace = now
			schedtrace(debug.scheddetail > 0)
		}
		unlock(&sched.sysmonlock)
	}
}

func retake(now int64) uint32 {
	n := 0
	// Prevent allp slice changes. This lock will be completely
	// uncontended unless we're already stopping the world.
	lock(&allpLock)
	// We can't use a range loop over allp because we may
	// temporarily drop the allpLock. Hence, we need to re-fetch
	// allp each time around the loop.
	for i := 0; i < len(allp); i++ {
		_p_ := allp[i]
		if _p_ == nil {
			// This can happen if procresize has grown
			// allp but not yet created new Ps.
			continue
		}
		pd := &_p_.sysmontick
		s := _p_.status
		sysretake := false
		if s == _Prunning || s == _Psyscall {
			// Preempt G if it's running for too long.
			t := int64(_p_.schedtick)
			if int64(pd.schedtick) != t {
				pd.schedtick = uint32(t)
				pd.schedwhen = now
			} else if pd.schedwhen+forcePreemptNS <= now {
				preemptone(_p_)
				// In case of syscall, preemptone() doesn't
				// work, because there is no M wired to P.
				sysretake = true
			}
		}
        //如果P在系统中调用( _Psyscall),且经历过了sysmon循环(20us-10ms),则抢占这个P
		if s == _Psyscall {
			// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
			t := int64(_p_.syscalltick)
			if !sysretake && int64(pd.syscalltick) != t {
				pd.syscalltick = uint32(t)
				pd.syscallwhen = now
				continue
			}
			// On the one hand we don't want to retake Ps if there is no other work to do,
			// but on the other hand we want to retake them eventually
			// because they can prevent the sysmon thread from deep sleep.
            //如果当前P,Local队列没有其它G,当前有其它G处理Idle状态,并且syscall执行事件不超过10ms,则不用解绑当前P
			if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
				continue
			}
			// Drop allpLock so we can take sched.lock.
			unlock(&allpLock)
			// Need to decrement number of idle locked M's
			// (pretending that one more is running) before the CAS.
			// Otherwise the M from which we retake can exit the syscall,
			// increment nmidle and report deadlock.
			incidlelocked(-1)
			if atomic.Cas(&_p_.status, s, _Pidle) {
				if trace.enabled {
					traceGoSysBlock(_p_)
					traceProcStop(_p_)
				}
				n++
				_p_.syscalltick++
				handoffp(_p_)
			}
			incidlelocked(1)
			lock(&allpLock)
		}
	}
	unlock(&allpLock)
	return uint32(n)
}


func startm(_p_ *p, spinning bool) {
	// Disable preemption.
	//
	// Every owned P must have an owner that will eventually stop it in the
	// event of a GC stop request. startm takes transient ownership of a P
	// (either from argument or pidleget below) and transfers ownership to
	// a started M, which will be responsible for performing the stop.
	//
	// Preemption must be disabled during this transient ownership,
	// otherwise the P this is running on may enter GC stop while still
	// holding the transient P, leaving that P in limbo and deadlocking the
	// STW.
	//
	// Callers passing a non-nil P must already be in non-preemptible
	// context, otherwise such preemption could occur on function entry to
	// startm. Callers passing a nil P may be preemptible, so we must
	// disable preemption before acquiring a P from pidleget below.
	mp := acquirem()
	lock(&sched.lock)
	if _p_ == nil { //从"空闲P链表"获取一个空间的P
		_p_ = pidleget()
		if _p_ == nil {
			unlock(&sched.lock)
			if spinning {
				// The caller incremented nmspinning, but there are no idle Ps,
				// so it's okay to just undo the increment and give up.
				if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
					throw("startm: negative nmspinning")
				}
			}
			releasem(mp)
			return
		}
	} //
	nmp := mget() //从"空闲m链表"获取一个空间的m
    //如果没有空闲的m,则会创建一个
	if nmp == nil {
		// No M is available, we must drop sched.lock and call newm.
		// However, we already own a P to assign to the M.
		//
		// Once sched.lock is released, another G (e.g., in a syscall),
		// could find no idle P while checkdead finds a runnable G but
		// no running M's because this new M hasn't started yet, thus
		// throwing in an apparent deadlock.
		//
		// Avoid this situation by pre-allocating the ID for the new M,
		// thus marking it as 'running' before we drop sched.lock. This
		// new M will eventually run the scheduler to execute any
		// queued G's.
		id := mReserveID()
		unlock(&sched.lock)

		var fn func()
		if spinning {
			// The caller incremented nmspinning, so set m.spinning in the new M.
			fn = mspinning
		}
        //会新建一个的m实例,m的实例包含一个go,然后调用newsproc动一个系统线程
		newm(fn, _p_, id)
		// Ownership transfer of _p_ committed by start in newm.
		// Preemption is now safe.
		releasem(mp)
		return
	}
	unlock(&sched.lock)
	if nmp.spinning {
		throw("startm: m is spinning")
	}
	if nmp.nextp != 0 {
		throw("startm: m has p")
	}
	if spinning && !runqempty(_p_) {
		throw("startm: p has runnable gs")
	}
	// The caller incremented nmspinning, so set m.spinning in the new M.
	nmp.spinning = spinning
	nmp.nextp.set(_p_)
	notewakeup(&nmp.park)
	// Ownership transfer of _p_ committed by wakeup. Preemption is now
	// safe.
	releasem(mp)
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/245684.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

web前端之正弦波浪动功能、repeat、calc

MENU 效果图htmlstylecalcrepeat 效果图 html <div class"grid"><span class"line"></span><span class"line"></span><span class"line"></span><span class"line"><…

[开源更新] 企业级身份管理和访问管理系统、为数字身份安全赋能

一、系统简介 名称&#xff1a;JNPF权限管理系统 JNPF 权限管理系统可用于管理企业内员工账号、权限、身份认证、应用访问等&#xff0c;可整合部署在本地或云端的内部办公系统、业务系统及第三方 SaaS 系统的所有身份&#xff0c;实现一个账号打通所有应用的服务。其有如下几…

C# OpenVINO 直接读取百度模型实现印章检测

目录 效果 模型信息 项目 代码 下载 其他 C# OpenVINO 直接读取百度模型实现印章检测 效果 模型信息 Inputs ------------------------- name&#xff1a;scale_factor tensor&#xff1a;F32[?, 2] name&#xff1a;image tensor&#xff1a;F32[?, 3, 608, 608] …

oracle aq java jms使用(数据类型为XMLTYPE)

记录一次冷门技术oracle aq的使用 版本 oracle 11g 创建用户 -- 创建用户 create user testaq identified by 123456; grant connect, resource to testaq;-- 创建aq所需要的权限 grant execute on dbms_aq to testaq; grant execute on dbms_aqadm to testaq; begindbms_a…

吴恩达《机器学习》12-2-12-3:大边界的直观理解、大边界分类背后的数学

一、大边界的直观理解 1. 大间距分类器的背景 支持向量机的大间距分类器着眼于构建一个能够在正负样本之间划定最大间距的决策边界。为了理解这一点&#xff0c;首先观察支持向量机的代价函数&#xff0c;其中涉及到正负样本的代价函数cos&#x1d461;1(&#x1d467;)和cos…

【Qt QML入门】Button

Button表示一个推按钮控件&#xff0c;用户可以按下或单击它。 import QtQuick import QtQuick.Window import QtQuick.ControlsWindow {id: winwidth: 800height: 600visible: truetitle: qsTr("Hello World")Button {id: btnwidth: 200height: 100anchors.centerIn…

[笔记] iperf3.1.3源码下载与交叉编译

由于需要测试一款40G网卡&#xff0c;下载了 iperf3.1.3 用于性能测试。 iperf3.1.3 源码下载 可以在 iperf 官网 下载源代码&#xff1a; 交叉编译 需要运行在 aarch64 linux 环境下&#xff0c;所以需要交叉编译。 进入iperf3 目录下&#xff0c;运行 ./configure 脚本…

JavaWeb之前端三件套

前端三件套 HTML1、入门程序2、HTML概念词汇解释3、常见标签3.1 标题标签3.2 段落标签3.3 换行标签3.4 列表标签3.5 超链接标签3.6 多媒体标签3.7 表格标签&#xff08;重点&#xff09;3.8 表单标签(重点)3.9 常见表单项标签(重点)3.10 布局相关标签 CSS1、CSS引入方式2、CSS引…

【Java】线程池的创建

目录 ​编辑 一、什么是线程池 二、创建和使用 导入必要的包&#xff1a; 创建线程池&#xff1a; 提交任务给线程池执行&#xff1a; 自定义Runnable和Callable任务&#xff1a; 关闭线程池&#xff1a; 我的其他博客 一、什么是线程池 在Java中&#xff0c;线程池是…

【Apollo】编译 Apollo 源码

https://github.com/ApolloAuto/apollo/blob/master/docs/01_Installation%20Instructions/apollo_build_and_test_explained.md 查看apollo.sh 的用法 ./apollo.sh --help可以编译整个模块&#xff0c;也可以单独编译某一个子模块./modules 为简单起见&#xff0c;Apollo 6.0…

快速多列查找匹配关键字

实例需求&#xff1a;根据第一列专业名称&#xff0c;在“专业分类指导目录”中&#xff0c;针对三个学历层次&#xff08;研究生、本科生、专科生&#xff09;分别查找对应专业类别&#xff0c;填写在对应位置&#xff0c;即截图中的黄色区域。 需要注意如下两点&#xff1a; …

linux磁盘空间清理

查看磁盘使用情况 查看磁盘分区上可以使用的磁盘空间 $ df -h若要查看文件类型和block&#xff0c;使用下面的命令 $ df -T查看每个文件和目录的磁盘使用空间&#xff0c;也就是文件的大小。 $ sudo du -sh /* $ sudo du -h --max-depth1 /清理旧的 Snap 包版本以释放磁盘空…

内部集成M0内核MCU Sub-1G 高性能低功耗的单片集成收发芯片DP4306F

DP4306F是一款高性能低功耗的单片集成收发机&#xff0c;集成M0核MCU&#xff0c;工作频率可覆盖200MHz~1000MHz&#xff0c;支持230/408/433/470/868/915频段。该芯片集成了射频接收器、射频发射器、频 率综合器、GFSK调制器、GFSK解调器等功能模块。通过SPI接口可以对输出功率…

Rancher中使用promtail+loki+grafna收集k8s日志并展示

Rancher中使用promtail+loki+grafna收集k8s日志并展示 根据应用需求和日志数量级别选择对应的日志收集、过滤和展示方式,当日志量不太大,又想简单集中管理查看日志时,可使用promtail+loki+grafna的方式。本文找那个loki和grafana外置在了k8s集群之外。 1、添加Chart Repo …

浏览器的事件循环机制(Event loop)

事件循环 浏览器的进程模型 何为进程&#xff1f; 程序运行需要有它自己专属的内存空间&#xff0c;可以把这块内存空间简单的理解为进程 每个应用至少有一个进程&#xff0c;进程之间相互独立&#xff0c;即使要通信&#xff0c;也需要双方同意。 何为线程&#xff1f; …

1- Electron 创建项目、初始化项目

Electron官网 Build cross-platform desktop apps with JavaScript, HTML, and CSS | Electron Electron 初始化 初始化项目 - 构造package.json npm init -y 安装Electron模块包 npm i electron -D // 注意&#xff01;如果报错查看node包是否太高 配置启动脚本 {&quo…

UE5:Lumen 框架

1.Lumen渲染流程框架 2.Lumen基本概念 2.1 LumenCard & LumenMeshCards LumenMeshCards&#xff1a;一组带有方向性的模型简化代理&#xff0c;视模型复杂度不同可能包含6个及以上数量的LumenCard&#xff1b;用来提供光照采样的位置和方向。 2.2 LumenCardPage & Lu…

TrustZone之强制隔离

TrustZone有时被称为一个强制执行的保护系统。请求者表示其访问的安全性,而内存系统决定是否允许该访问。内存系统基于何种方式进行检查呢? 在大多数现代系统中,内存系统的检查是由互连完成的。例如,Arm NIC-400允许系统设计人员为每个连接的完成者指定以下内容: • 安全…

基于开源的JAVA mongodb jdbc 驱动 使用教程

基于开源的JAVA mongodb jdbc 驱动 使用教程介绍 介绍 本文介绍一款开源的基于JAVA的 Mongodb JDBC 驱动使用教程 开源地址 https://gitee.com/bgong/jdbc-mongodb-driver功能价值 与mybaits融合&#xff1a;复用mybatis的功能特性&#xff0c;如:缓存,if动态判断标签等特…

程序员视角体验快速搭建智能客服中心

本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 亚马逊云科技开发者社区, 知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道。 目录 前言基本概念工作原理浅试体验体验收获最后 前言 Amazon Connect是亚马逊云科技…