自己动手写数据库: select 查询语句对应查询树的构造和执行

首先我们需要给原来代码打个补丁,在SelectScan 结构体初始化时需要传入 UpdateScan 接口对象,但很多时候我们需要传入的是 Scan 对象,因此我们需要做一个转换,也就是当初始化 SelectScan 时,如果传入的是 Scan 对象,那么我们就将其封装成 UpdateScan 接口对象,因此在 query 目录下增加一个名为 updatescan_wrapper.go 的文件,在其中输入内容如下:

package query

import (
	"record_manager"
)

type UpdateScanWrapper struct {
	scan Scan
}

func NewUpdateScanWrapper(s Scan) *UpdateScanWrapper {
	return &UpdateScanWrapper{
		scan: s,
	}
}

func (u *UpdateScanWrapper) GetScan() Scan {
	return u.scan
}

func (u *UpdateScanWrapper) SetInt(fldName string, val int) {
	//DO NOTHING
}

func (u *UpdateScanWrapper) SetString(fldName string, val string) {
	//DO NOTHING
}

func (u *UpdateScanWrapper) SetVal(fldName string, val *Constant) {
	//DO NOTHING
}

func (u *UpdateScanWrapper) Insert() {
	//DO NOTHING
}

func (u *UpdateScanWrapper) Delete() {
	//DO NOTHING
}

func (u *UpdateScanWrapper) GetRid() *record_manager.RID {
	return nil
}

func (u *UpdateScanWrapper) MoveToRid(rid *record_manager.RID) {
	// DO NOTHING
}

上面代码逻辑简单,如果调用 Scan 对象接口时,他直接调用其 Scan 内部对象的接口,如果调用到 UpdateScan 的接口,那么它什么都不做。完成上面代码后,我们在select_plan.go 中进行一些修改:

func (s *SelectPlan) Open() interface{} {
	scan := s.p.Open()
	updateScan, ok := scan.(query.UpdateScan)
	if !ok {
		updateScanWrapper := query.NewUpdateScanWrapper(scan.(query.Scan))
		return query.NewSelectionScan(updateScanWrapper, s.pred)
	}
	return query.NewSelectionScan(updateScan, s.pred)
}

上面代码在创建 SelectScan 对象时,先判断传进来的对象是否能类型转换为 UpdateScan,如果不能,那意味着s.p.Open 获取的是 Scan 对象,因此我们使用前面的代码封装一下再用来创建 SelectScan 对象。完成这里的修改后,我们进入正题。

前面我们在实现 sql 解析器后,在解析完一条查询语句后会创建一个 QueryData 对象,本节我们看看如何根据这个对象构建出合适的查询规划器(Plan)。我们将采取由简单到负责的原则,首先我们直接构建 QueryData 的信息去构建查询规划对象,此时我们不考虑它所构造的查询树是否足够优化,后面我们再慢慢改进构造算法,直到算法能构建出足够优化的查询树。

我们先看一个具体例子,假设我们现在有两个表 STUDENT, EXAM,第一个表包含两个字段分别是学生 id 和姓名:

idname
1Tom
2Jim
3John

第二个表包含的是学生 id,科目名称,考试乘机:

stuidexamgrad
1mathA
1algorithmB
2writingC
2physicsC
3chemicalB
3englishC

现在我们使用 sql 语句查询所有考试成绩得过 A 的学生:

select name from STUDENT, EXAM where id = student_id and grad='A'

当 sql 解释器读取上面语句后,他就会创建一个 QueryData 结构,里面 Tables 对了就包含两个表的名字,也就是 STUDENT, EXAM。由于这两个表不是视图,因此上面代码中判断 if viewDef != nil 不成立,于是进入 else 部分,也就是代码会为这两个表创建对应的 TablePlan 对象,接下来直接对这两个表执行 Product 操作,也就是将左边表的一行跟右边表的每一行合起来形成新表的一行,Product 操作在 STUDENT 和 EXAM 表后所得结果如下:

idnamestudent_idexamgrad
1Tom1mathA
1Tom1algorithmB
1Tom2writingA
1Tom2physicsC
1Tom3chemicalB
1Tom3englishA

接下来代码创建 ScanSelect 对象在上面的表上,接着获取该表的每一行,然后检测该行的 id 字段是否跟 student_id 字段一样,如果相同,那么查看其 grad 字段,如果该字段是’A’,就将该行的 name 字段显示出来。

下面我们看看如何使用代码把上面描述的流程实现出来。首先我们先对接口进行定义,在 Planner 目录下的 interface.go 文件中增加如下内容:

type QueryPlanner interface {
	CreatePlan(data *query.QueryData, tx tx.Transaction) Plan
}

接着在 Planner 目录下创建文件 query_planner.go,同时输入以下代码,代码的实现逻辑将接下来的文章中进行说明:

package planner

import (
	"metadata_management"
	"parser"
	"tx"
)

type BasicQueryPlanner struct {
	mdm *metadata_management.MetaDataManager
}

func CreateBasicQueryPlanner(mdm *metadata_management.MetaDataManager) QueryPlanner {
	return &BasicQueryPlanner{
		mdm: mdm,
	}
}

func (b *BasicQueryPlanner) CreatePlan(data *parser.QueryData, tx *tx.Transaction) Plan {
	//1,直接创建 QueryData 对象中的表
	plans := make([]Plan, 0)
	tables := data.Tables()
	for _, tblname := range tables {
		//获取该表对应视图的 sql 代码
		viewDef := b.mdm.GetViewDef(tblname, tx)
		if viewDef != nil {
			//直接创建表对应的视图
			parser := parser.NewSQLParser(viewDef)
			viewData := parser.Query()
			//递归的创建对应表的规划器
			plans = append(plans, b.CreatePlan(viewData, tx))
		} else {
			plans = append(plans, NewTablePlan(tx, tblname, b.mdm))
		}
	}

	//将所有表执行 Product 操作,注意表的次序会对后续查询效率有重大影响,但这里我们不考虑表的次序,只是按照
	//给定表依次执行 Product 操作,后续我们会在这里进行优化
	p := plans[0]
	plans = plans[1:]

	for _, nextPlan := range plans {
		p = NewProductPlan(p, nextPlan)
	}

	p = NewSelectPlan(p, data.Pred())

	return NewProjectPlan(p, data.Fields())
}

上面代码中 QueryData就是解析器在解析 select 语句后生成的对象,它的 Tables 数组包含了 select 语句要查询的表,所以上面代码的 CreatePlan 函数先从 QueryData 对象获得 select 语句要查询的表,然后使用遍历这些表,使用 NewProductPlan 创建这些表对应的 Product 操作,最后在 Product 的基础上我们再创建 SelectPlan,这里我们就相当于使用 where 语句中的条件,在 Product 操作基础上将满足条件的行选出来,最后再创建 ProjectPlan,将在选出的行基础上,将需要的字段选择出来。

下面我们测试一下上面代码的效果,首先在 main.go 中,我们先把 student, exam 两个表构造出来,代码如下:

func createStudentTable() (*tx.Transation, *metadata_manager.MetaDataManager) {
	file_manager, _ := fm.NewFileManager("student", 2048)
	log_manager, _ := lm.NewLogManager(file_manager, "logfile.log")
	buffer_manager := bmg.NewBufferManager(file_manager, log_manager, 3)
	tx := tx.NewTransation(file_manager, log_manager, buffer_manager)
	sch := record_manager.NewSchema()
	mdm := metadata_manager.NewMetaDataManager(false, tx)

	sch.AddStringField("name", 16)
	sch.AddIntField("id")
	layout := record_manager.NewLayoutWithSchema(sch)

	ts := query.NewTableScan(tx, "student", layout)
	ts.BeforeFirst()
	for i := 1; i <= 3; i++ {
		ts.Insert() //指向一个可用插槽
		ts.SetInt("id", i)
		if i == 1 {
			ts.SetString("name", "Tom")
		}
		if i == 2 {
			ts.SetString("name", "Jim")
		}
		if i == 3 {
			ts.SetString("name", "John")
		}
	}

	mdm.CreateTable("student", sch, tx)

	exam_sch := record_manager.NewSchema()

	exam_sch.AddIntField("stuid")
	exam_sch.AddStringField("exam", 16)
	exam_sch.AddStringField("grad", 16)
	exam_layout := record_manager.NewLayoutWithSchema(exam_sch)

	ts = query.NewTableScan(tx, "exam", exam_layout)
	ts.BeforeFirst()

	ts.Insert() //指向一个可用插槽
	ts.SetInt("stuid", 1)
	ts.SetString("exam", "math")
	ts.SetString("grad", "A")

	ts.Insert() //指向一个可用插槽
	ts.SetInt("stuid", 1)
	ts.SetString("exam", "algorithm")
	ts.SetString("grad", "B")

	ts.Insert() //指向一个可用插槽
	ts.SetInt("stuid", 2)
	ts.SetString("exam", "writing")
	ts.SetString("grad", "C")

	ts.Insert() //指向一个可用插槽
	ts.SetInt("stuid", 2)
	ts.SetString("exam", "physics")
	ts.SetString("grad", "C")

	ts.Insert() //指向一个可用插槽
	ts.SetInt("stuid", 3)
	ts.SetString("exam", "chemical")
	ts.SetString("grad", "B")

	ts.Insert() //指向一个可用插槽
	ts.SetInt("stuid", 3)
	ts.SetString("exam", "english")
	ts.SetString("grad", "C")

	mdm.CreateTable("exam", exam_sch, tx)

	return tx, mdm
}

然后我们用解析器解析select查询语句生成 QueryData 对象,最后使用BasicQueryPlanner创建好执行树和对应的 Scan 接口对象,最后我们调用 Scan 对象的 Next 接口来获取给定字段,代码如下:

func main() {
	//构造 student 表
	tx, mdm := createStudentTable()
	queryStr := "select name from student, exam where id = stuid and grad=\"A\""
	p := parser.NewSQLParser(queryStr)
	queryData := p.Query()
	test_planner := planner.CreateBasicQueryPlanner(mdm)
	test_plan := test_planner.CreatePlan(queryData, tx)
	test_interface := (test_plan.Open())
	test_scan, _ := test_interface.(query.Scan)
	for test_scan.Next() {
		fmt.Printf("name: %s\n", test_scan.GetString("name"))
	}

}

上面代码运行后所得结果如下:
请添加图片描述
从运行结果看到,代码成功执行了 sql 语句并返回了所需要的字段。请感兴趣的同学在 B 站搜索 coding 迪斯尼,通过视频的方式查看我的调试演示过程,这样才能对代码的设计有更好的理解,代码下载:
链接: https://pan.baidu.com/s/16ftSp46cU5NLisScq-ftZg 提取码: js99

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/245183.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vs2019 配置liblas

vs2019 配置liblas liblas是一个开源的C库&#xff0c;用于读写LAS格式的点云数据。libLAS易于使用&#xff0c;广泛应用于各种点云处理任务。它支持基本的点云数据操作&#xff0c;如读取、写入和编辑LAS文件中的点。 1.源码下载 https://github.com/libLAS/libLAS 2.编译 首…

Docker多平台安装与配置指南

Docker的流行使得它成为开发者和运维人员不可或缺的工具。在本文中&#xff0c;将深入探讨如何在不同平台上安装和配置Docker&#xff0c;旨在为大家提供详尽的指南&#xff0c;确保他们能够顺利地使用这一强大的容器化工具。 Docker基础概念回顾 Docker利用容器技术&#xf…

设计模式-访问者模式

访问者模式是设计模式中行为型模式的一种&#xff08;其他的还有如创建型、结构型&#xff09;&#xff0c;听说是设计模式中比较难理解的一种&#xff0c;最近项目中用到了该模式&#xff0c;所以今天总结和实践一下。 一、访问者模式要解决的问题&#xff1a; 稳定的数据结…

【系统架构】集群、分布式概念及系统架构演进过程

集群、分布式概念&#xff1a; 对食物没有太高要求的人在肚子饿的时候一般都会选择去兰州拉面、沙县小吃等小饭馆&#xff0c;这类小饭馆有个很显著的特点&#xff1a;洗菜、切菜、炒菜都是同一个人完成&#xff0c;如果厨子不舒服可能饭馆还会歇业。而一些人流量较大的饭馆的分…

MATLAB 平面拟合并可视化(34)

MATLAB 平面拟合并可视化(34) 一、效果二、代码一、效果 二、代码 % 生成三维点数据 x = rand(100, 1); y = rand(100, 1

nest框架的token登录,以及token校验

1.搭建项目 项目初始化&#xff1a; npm i -g nestjs/cli nest new project-name 在终端下执行这四个命令&#xff0c;生成两个新模块&#xff1a; nest g module auth nest g service auth nest g module users nest g service users 然后把这三个文件删掉&#xff0c;是没有…

【LeetCode刷题笔记(4)】【Python】【移动零】【简单】

文章目录 题目描述示例 1示例 2提示 解决方案题意拆解双指针算法双指针法的主要优点双指针法的使用场景举例&#xff1a; 解决方案&#xff1a;【双指针一次遍历】解题心得方案代码运行结果复杂度分析 结束语 移动零 题目描述 给定一个数组 nums&#xff0c;编写一个函数将所…

OWASP ESAPI 预防XSS跨站脚本攻击

跨站脚本攻击XSS案例&#xff1a;跨站脚本攻击XSS案例及其解决方案_xss攻击案例-CSDN博客 Java集成&#xff1a; 1、引入maven <!--OWASP ESAPI&#xff0c;防御 XSS跨站攻击--><dependency><groupId>org.owasp.esapi</groupId><artifactId>esa…

ArrayList集合的两个实例应用,有趣的洗牌算法与杨辉三角

本节课的内容&#xff0c;就让我们来学习一下ArrayList集合的应用&#xff0c;ArrayList的本质就是一个顺序表&#xff0c;那下面一起来学习吧 目录 一、杨辉三角 1.题目详情及链接 2.剖析题目 3.思路及代码 二、洗牌算法 1.创造牌对象 2.创造一副牌 3.洗牌操作 4.发…

Alibaba分布式事务组件Seata AT实战

1. 分布式事务简介 1.1 本地事务 大多数场景下&#xff0c;我们的应用都只需要操作单一的数据库&#xff0c;这种情况下的事务称之为本地事务(Local Transaction)。本地事务的ACID特性是数据库直接提供支持。本地事务应用架构如下所示&#xff1a; 在JDBC编程中&#xff0c;我…

力扣24 两两交换链表中的节点 Java版本

文章目录 题目解题方法Code 题目 给你一个链表&#xff0c;两两交换其中相邻的节点&#xff0c;并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题&#xff08;即&#xff0c;只能进行节点交换&#xff09;。 示例 1&#xff1a; 输入&#xff1a;hea…

事务隔离级别:保障数据库并发事务的一致性与性能

目录 引言 1. 事务隔离级别概述 2. 读未提交隔离级别 3. 读已提交隔离级别 4. 可重复读隔离级别 5. 串行化隔离级别 6. 保障事务隔离级别的机制 7. 如何选择合适的隔离级别 8. 结语 引言 在数据库管理系统&#xff08;DBMS&#xff09;中&#xff0c;事务隔离级别是一…

12.14_黑马数据结构与算法笔记Java

目录 120 二叉搜索树 min max 121 二叉搜索树 put 122 二叉搜索树 前任后任1 123 二叉搜索树 前任后任2 124 二叉搜索树 删除1 125 二叉搜索树 删除2 126 二叉搜索树 删除3 127 二叉搜索树 删除 递归1 128 二叉搜索树 删除 递归2 129 二叉搜索树 范围查询 130 二叉搜…

ADC学习总结

ADC的架构分类&#xff1a; 1、Delta-Sigma 采样率一般是在1M以内&#xff0c;位数一般可以做的很高&#xff0c;比如24位&#xff0c;Delta-Sigma ADC采用了过采样技术&#xff0c;不需要在模拟输入端加抗混叠滤波&#xff0c;由后端数字滤波器进行处理&#xff0c;通过信噪…

网工内推 | IT经理,50k*14薪,NP以上即可,七险一金

01 海天瑞声 招聘岗位&#xff1a;IT经理 职责描述&#xff1a; 1、IT基础架构的方案制定、实施和日常维护&#xff0c;包括机房建设运维、服务器配置及运维、网络规划及运维、上网行为管理、电话、电话、监控、门禁等各类弱电系统搭建及运维 2、负责公司环境及网络安全防御体…

WEB服务器介绍

Web服务器是指驻留于因特网上某种类型计算机的程序。当Web浏览器连到服务器上并请求文件时&#xff0c;服务器将处理该请求并将文件发送到该浏览器上&#xff0c;附带的信息会告诉浏览器如何查看该文件&#xff0c;即文WEB服务器件类型。服务器使用HTTP进行信息交流&#xff0c…

ASF-YOLO开源 | SSFF融合+TPE编码+CPAM注意力,精度提升!

目录 摘要 1 Introduction 2 Related work 2.1 Cell instance segmentation 2.2 Improved YOLO for instance segmentation 3 The proposed ASF-YOLO model 3.1 Overall architecture 3.2 Scale sequence feature fusion module 3.3 Triple feature encoding module …

Kvaser Leaf v3 重磅上新!报文速率高达20000条/秒!支持CAN FD!EAN: 73-30130-01424-4

作为CAN总线领域的专家&#xff0c;Kvaser深耕行业40年&#xff0c;至今已经累计推出100多款CAN产品。其中稳定小巧、便携易用的Kvaser经典Leaf系列是将计算机与CAN网络连接并获取CAN/CAN FD数据的最简单、性价比最高的方法之一。Kvaser秉持着将用户放在重要位置的原则&#xf…

6.5.编解码器信息的收集

那在上节课中呢&#xff1f;我向你介绍了add track相关的内容&#xff0c;那今天呢&#xff1f;我们来看看编解码器信息的收集。那在这里呢&#xff0c;我们需要问几个重要的问题&#xff0c;那首先呢&#xff0c;就是我们上节课通过&#xff0c;可以让web rtc知道我们都要传输…

智能优化算法应用:基于旗鱼算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于旗鱼算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于旗鱼算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.旗鱼算法4.实验参数设定5.算法结果6.参考文献7.MA…