智能优化算法应用:基于斑点鬣狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于斑点鬣狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于斑点鬣狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.斑点鬣狗算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用斑点鬣狗算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.斑点鬣狗算法

斑点鬣狗算法原理请参考:https://blog.csdn.net/u011835903/article/details/107542352
斑点鬣狗算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


斑点鬣狗算法参数如下:

%% 设定斑点鬣狗优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明斑点鬣狗算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/241944.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Qt/C++视频监控安卓版/多通道显示视频画面/录像存储/视频播放安卓版/ffmpeg安卓

一、前言 随着监控行业的发展,越来越多的用户场景是需要在手机上查看监控,而之前主要的监控系统都是在PC端,毕竟PC端屏幕大,能够看到的画面多,解码性能也强劲。早期的手机估计性能弱鸡,而现在的手机性能不…

ConcurrentHashMap并发

ConcurrentHashMap 并发 概述 jdk1.7概述 ConcurrentHashMap我们通过名称也知道它也是一个HashMap, 但是它底层JDK1.7与1.8的实现原理并不相同 在1.7中它内部维护一个Segment[]的数组, 加载因子0.75, 在创建一个长度为2的小数组HashEntry[], 在0索引处创建 根据键的哈希值计…

【ret2hbp】一道板子测试题 和 SCTF2023 - sycrpg

前言 ret2hbp 主要是利用在内核版本 v6.2.0 之前,cpu_entry_area mapping 区域没有参与随机化的利用。其主要针对的场景如下: 1)存在任意地址读,泄漏内核地址 2)存在无数次任意地址写,泄漏内核地址并提权…

Linux中使用podman管理容器

本章主要介绍使用podman管理容器 了解什么是容器,容器和镜像的关系安装和配置podman拉取和删除镜像给镜像打标签导出和导入镜像创建和删除镜像数据卷的使用管理容器的命令使用普通用户管理容器 对于初学者来说,不太容易理解什么是容器,这里…

SpringBoot 实现动态切换数据源

最近在做业务需求时,需要从不同的数据库中获取数据然后写入到当前数据库中,因此涉及到切换数据源问题。本来想着使用Mybatis-plus中提供的动态数据源SpringBoot的starter:dynamic-datasource-spring-boot-starter来实现。 结果引入后发现由于…

Windows Subsystem for Linux (WSL) 安装与使用笔记

文章目录 Part.I IntroductionPart.II 安装Chap.I 安装流程Chap.II 迁移至其他盘 Part.III 使用Chap.I 一些信息Chap.II 配置下载软件的源Chap.III 安装 pip Reference Part.I Introduction Windows Subsystem for Linux 简写为 WSL,是 Windows 的一个 Linux 子系统…

《洛谷深入浅出进阶篇》 进阶数论

本文章内容比较长,请耐心食用!!!!! 目录: 模意义下的数和运算喵~ 模意义下的乘法逆元喵~ 同余方程与中国剩余定理喵~ 线性筛与积性函数喵~ 欧拉函数喵~ 一,模意义下的数和运算。…

融了超24亿一分钱不花,放银行吃利息,这家存储创企厉害了

​引言:AI与大模型风起云涌,催生了这匹存储“黑马” 【全球存储观察 | 科技热点关注】 这家总部设在美国的存储初创公司,真的赶上AI与大模型时代的风口了。Vast Data公司最新再次获得E轮融资1.18亿美元,但是这个存储…

Leetcode 78 子集

题意理解: 求一个集合的所有子集。该集合中没有重复元素。 首先明确什么是子集:子集中的元素都在全集里。 [1,2,3] 子集:[]、[1]、[2]、[3]、[12]、[13]、[23]、[123] 注意:[]空集是所有集合的子集。 解题思路: 类似于…

2023自动化测试框架大对比:哪个更胜一筹?

所谓工欲善其事,必先利其器,在进行自动化测试时,选择一个合适的框架是至关重要的。因为一个好的测试框架可以大大提高测试效率,减少我们很多工作量。在选择框架之前,我们通常需要对不同的框架进行对比,以便…

Jetpack Startup 优雅完成库的初始化和方法接口简化

目录 1.Startup组件是什么2.Startup组件能做啥2.1 startup组件可以简化用户使用我们提供的库的流程。2.2 简化库提供给使用者的API接口 3.如何使用Startup组件3.1 引入依赖3.2 创建一个初始化的类继承Initializer3.3 在我们库的AndroidManifest.xml中加入配置 4.使用Startup组件…

或许你更胜一筹呢

还记得刚出来时,一位前辈对我说过的一句话,“一定不要妄自菲薄”。说实话,一开始我并不知道这个成语的具体含义。后面百度才知道 妄自菲薄:过分地看轻自己 当时还没毕业,无论是从能力还是学识方面,我都不知…

C、C++、C#的区别概述

C、C、C#的区别概述 https://link.zhihu.com/?targethttps%3A//csharp-station.com/understanding-the-differences-between-c-c-and-c/文章翻译源于此链接 01、C语言 ​ Dennis Ritchie在1972年创造了C语言并在1978年公布。Ritchie设计C的初衷是用于开发新版本的Unix。在那之…

如何建立一套完善的销售管理体系?

如何建立一套完善的销售管理体系? 该提问下已有许多专业的回答,从多个角度为题主出谋划策:销售主管如何提升个人能力、销售团队如何管理、PDCA管理方法论、销售闭环……似乎都与硬性的个人能力挂钩,销售能力、管理能力等等。 或…

技术Leader:像李云龙一样打造学习型团队

今天跟大家分享一下怎么样构建一个学习型的团队。 首先对于计算机行业而言,不明而喻,我们要接受的东西真的太多了。我们接触的信息和变化也太多了。如果只是因循守旧,排斥新东西,那么我们被时代淘汰只是个时间问题。 想当年我大…

boost编译静态库

版本1_83_0 下载地址https://boostorg.jfrog.io/artifactory/main/release/1.83.0/source/boost_1_83_0.zip 解压后根目录可见 参考方式:打开index.html 可通过此路径找到编译方法 进入getting started,右下角有linux和windows的下一步可选&#xff0…

IO流(二)

目录 一.文件拷贝 1.小文件拷贝 2.FileInputStream的读取问题 二.捕获异常 三.字符集 1.GBK 英文存储(单字节) 中文存储(双字节) 2.Unicode 3.乱码 原因 规避乱码的方式 四.字符流 FileReader 无参 有参 FileWrit…

pcl的polygonmesh在cloudcompare显示异常

一个polygonMesh文件在PCL显示是这样的: 把它保存成ply,然后用cc打开却是这样的: 这看起来像是某些三角面片没有被保存下来,实际上是因为保存的polygonmesh带有法线信息被pcl区分正反面,这些黑色的小三角它的法线朝向和绿色的不一样. 一个解决办法是清除法线.在cloudcompare选…

AI全栈大模型工程师(二十四)常用的超参

文章目录 七、先介绍几个常用的超参7.1、过拟合与欠拟合7.2、学习率调整策略八、自然语言处理常见的网络结构8.1、文本卷积神经网络 TextCNN8.2、循环神经网络 RNN8.3、Attention (for RNN)后记七、先介绍几个常用的超参 7.1、过拟合与欠拟合 奥卡姆剃刀: 两个处于竞争地位的…

防火墙访问控制、安全审计、网络设备防护检查表

1、访问控制类检查 2、安全审计类检查 3、网络设备防护类检查 原件: 防火墙标准检查表 分类 测评项 预期结果 访问控制 应在网络边界部署访问控制设备,启用访问控制功能 启用了访问控制规则 应能根据会话状态信息为数据流提供明确的允许/拒绝访…