基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含python、JS工程源码)+数据集+模型(一)

目录

  • 前言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
    • Python环境
    • TensorFlow 环境
    • Jupyter Notebook环境
    • Pycharm 环境
  • 相关其它博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

本项目基于Keras框架,引入CNN进行模型训练,采用Dropout梯度下降算法,按比例丢弃部分神经元,同时利用IOT及微信小程序实现自动化远程监测果实成熟度以及移动端实时监测的功能,为果农提供采摘指导,有利于节约劳动力,提高生产效率,提升经济效益。

本项目基于Keras框架,采用卷积神经网络(CNN)进行模型训练。通过引入Dropout梯度下降算法,实现了对神经元的按比例丢弃,以提高模型的鲁棒性和泛化性能。同时,利用物联网(IoT)技术和微信小程序,项目实现了自动化远程监测果实成熟度,并在移动端实时监测果园状态的功能。这为果农提供了采摘的实时指导,有助于节约劳动力、提高生产效率,从而提升果园经济效益。

首先,项目采用Keras框架构建了一个卷积神经网络,利用深度学习技术对果实成熟度进行准确的识别和预测。

其次,引入Dropout梯度下降算法,通过随机丢弃神经元的方式,防止模型过拟合,提高了对新数据的泛化能力。

接着,项目整合了物联网技术,通过传感器等设备对果园中的果实进行远程监测。这样,果农可以在不同地点远程了解果实的成熟度状况。

同时,通过微信小程序,果农可以实时监测果园状态,了解果实成熟度、采摘时机等信息,从而更加科学地安排采摘工作。

总体来说,该项目不仅在模型训练上引入了先进的深度学习技术,还通过物联网和微信小程序实现了智能化的果园管理系统,为果农提供了更加便捷、高效的农业生产解决方案。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

模型训练流程如图所示。
在这里插入图片描述

数据上传流程如图所示。

在这里插入图片描述

小程序流程如图所示。
在这里插入图片描述

运行环境

本部分包括Python环境、TensorFlow环境、JupyterNotebook环境、PyCharm环境、微信开发者工具和OneNET云平台。

Python环境

需要Python 3.6及以上配置,在Windows环境下推荐下载Anaconda完成Python所需环境的配置,下载地址为https://www.anaconda.com/,也可下载虚拟机在Linux环境下运行代码。

TensorFlow 环境

安装方法如下:

打开Anaconda Prompt,输入清华仓库镜像。

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config -set show_channel_urls yes

创建Python 3.5的环境,名称为TensorFlow,此时Python版本和后面TensorFlow的版本有匹配问题,此步选择Python 3.x。

conda create -n tensorflow python=3.5

有需要确认的地方,都输入y。在Anaconda Prompt中激活TensorFlow环境:

conda activate tensorflow

安装CPU版本的TensorFlow:

pip install -upgrade --ignore -installed tensorflow

测试代码如下:

import tensorflow as tf
hello = tf.constant( 'Hello, TensorFlow! ')
sess = tf.Session()
print sess.run(hello)
# 输出 b'Hello! TensorFlow'

安装完毕。

Jupyter Notebook环境

安装Jupyter Notebook,前提是已安装Python2.7或Python3.3及以上版本。
一种方法是使用Anaconda安装,在终端输入命令:

conda install jupyter notebook

另一种方法是使用pip命令安装,把pip升级到最新版本,输入命令:

pip install -upgrade pip

再安装JupyterNotebook,输入命令:

pip install jupyter

安装完毕。

Pycharm 环境

PyCharm下载地址为http://www.jetbrains.com/pycharm/download/#section=windows,进入网站后单击Comminity版本下的DOWNLOAD下载安装包,下载完成后安装。单击Create New Project创建新的项目文件,Location为存放工程的路径,单击project附近的三角符号,可以看到PyCharm已经自动获取Python 3.6,单击create完成。

相关其它博客

基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含python、JS工程源码)+数据集+模型(二)

基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含python、JS工程源码)+数据集+模型(三)

基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含python、JS工程源码)+数据集+模型(四)

基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含python、JS工程源码)+数据集+模型(五)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/241021.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Docker】Docker的使用案例以及未来发展、Docker Hub 服务、环境安全、容器部署安全

作者简介: 辭七七,目前大二,正在学习C/C,Java,Python等 作者主页: 七七的个人主页 文章收录专栏: 七七的闲谈 欢迎大家点赞 👍 收藏 ⭐ 加关注哦!💖&#x1f…

【毕业设计之Android系列】智能家居远程控制系统设计

智能家居远程控制系统设计 摘 要 该系统是一种基于Android平台的应用程序,可以通过网络连接实现对家居设备的远程控制。其主要功能包括家居设备的开关控制、温度调节、音乐播放、安防监控等。系统的设计需要考虑硬件、软件、数据传输、安全性和扩展性等因素&#xf…

【EXCEL】vlookup,index/match查找函数

区别: 1.Vlookup函数只能查找列数据,即纵向查找,而IndexMatch函数,既可以纵向查找,也可以横向查找; 2、Vlookup函数查找的依据(第一个参数)必须位于数据源的第一列,IndexMatch函数组合则无此限制…

深度强化学习记录

增强学习是什么 增强学习 与环境交互获取反馈 agent 目标是最大化累积奖励,称为期望值回馈 增强学习框架 RL Process RL process叫做Markov Decision Process (MDP) The reward hypothesis RL基于奖励假设,目标函数是最大化期望回归&#xff0c…

MobileNet网络

介绍 MobileNet 网络专注于移动端或者嵌入式设备中的轻量级CNN网络,相比传统卷积神经网络,在准确率小幅降低的前提下大大减少模型参数与运算量(相比VGG16准确率减少了0.9%,但模型参数只有VGG的1/32) 网络中的亮点&am…

基于SSM的小儿肺炎知识管理系统设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

蓝桥杯Web组学习总结 - 目录导航版

HTML5 HTML 基础标签 HTML5 标签列表 HTML5 新特性 HTML5都有哪些新特性? CSS3 CSS 基础语法 CSS参考手册 盒子模型 CSS Box Model (盒子模型) 浮动与定位?? CSS 浮动(float)与定位(position) CSS布局之浮动和定位 CSS3 新特性 …

shiro Filter加载和执行 源码解析

一、背景 在使用若依框架(前后端不分离包含shiro安全框架)时,发现作者添加了验证码、登录帐号控制等自定义过滤器,于是对自定的过滤器加载和执行流程产生疑问。下面以验证码过滤器为例,对源码解析。注意类之间的继承关…

链游成为蓝海,潮游世界开创未来新时代

区块链、元宇宙浪潮来袭,为数字世界开启崭新的大门,一场链游模式的范式革命正在发生! 未来,元宇宙中,链游将成为中坚力量。 潮游世界抢占时代先机,利用区块链技术的去中心化和数字资产的不可替代性&#x…

当当狸AR智能学习图集跨越千年文明传承,邀您“面对面”与虚拟诗人互动对诗

中华传统文化底蕴深厚,余韵悠长。即使经过千年的历史裂变,依然历久铭心慰藉着一代又一代人的灵魂。千百年后的今天,成为了我们独一无二的财富。 如今,国人学习中华传统文化的方式有很多,诗词集、动画影片、诗歌传颂等…

生物技术行业分析:预计2029年将达到55707亿元

生物技术( biotechnology),是指人们以现代生命科学为基础,结合其他基础科学的科学原理,采用先进的科学技术手段,按照预先的设计改造生物体或加工生物原料,为人类生产出所需产品或达到某种目的的技术方式生物技术利用对微生物、动植物等多个领域的深入研究,利用新兴技术对物质原…

Unity2023.3(有可能叫Unity6)版本开始将可以发布WebGPU

翻译一段官网上的话: 利用Unity 2023.3(发布时有可能叫Unity6)中最新的WebGPU图形API集成,尝试最大限度的提升您的网络游戏的真实感。 通过与谷歌的战略合作,Unity实时3D平台的强大的图形功能现在为图形丰富的网络游戏进行微调,实…

如何解决PET材料难于粘接的问题?有效解决方案分享!

1.PET是什么材料?有哪些特点和用途? PET是聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate)的缩写,是一种常见的塑料材料。它具有以下特点: 高强度和刚性:PET具有较高的拉伸强度和模量,使其…

python对验证码进行降噪处理

举例图: 第一步先通过二值化处理把干扰线去掉: from PIL import Image# 二值化处理 def two_value():for i in range(1,5):# 打开文件夹中的图片imageImage.open(./Img/str(i).jpg)# 灰度图limimage.convert(L)# 灰度阈值设为165,低于这个值…

如何使用CFImagehost结合内网穿透搭建简洁易用的私人图床并远程访问

文章目录 1.前言2. CFImagehost网站搭建2.1 CFImagehost下载和安装2.2 CFImagehost网页测试2.3 cpolar的安装和注册 3.本地网页发布3.1 Cpolar临时数据隧道3.2 Cpolar稳定隧道(云端设置)3.3.Cpolar稳定隧道(本地设置) 4.公网访问测…

从零开始学Python系列课程第13课:Python中的循环结构(上)

一、循环结构的应用场景及分类 我们在编写程序时,一定会遇到需要重复执行某些指令的场景。举一个简单的例子,在前面讲分支结构时以游戏通关为例,如果第一关结束时分值不够则通关失败需要重新闯关,重新闯关这就是一个重复性的动作…

概率的乘法公式

两个事件的情况 假设A、B为随机事件,并且事件A的概率,那么 三个事件的情况 假设A、B、C为随机事件,并且,那么 多个事件的情况 假设为随机事件,其中,并且,那么

Resolving ORA-600[3020] Raised During Recovery

Resolving ORA-600[3020] Raised During Recovery (Doc ID 361172.1)​编辑To Bottom In this Document Symptoms Changes Cause Solution References APPLIES TO: Oracle Database Exadata Cloud Machine - Version N/A and later Oracle Cloud Infrastructure - Database Ser…

Arduino中以太网Udp通信

目录 1、测试硬件 2、程序 (0)头文件添加 (1)变量定义 (2)初始化程序 (3)循环执行程序 3、程序下载 (1)开发板控制器和端口号选择 (2&am…

淘宝订单API接口在电商行业中的应用与实现

一、引言 随着电商行业的快速发展,订单处理成为电商运营的核心环节。淘宝作为中国最大的电商平台之一,其订单API接口在电商行业中的应用越来越广泛。本文将详细介绍淘宝订单API接口在电商行业中的应用,并深入剖析相关的技术细节,…