时间序列预测 — CNN-LSTM实现多变量多步光伏预测(Tensorflow)

目录

1 数据处理

1.1 导入库文件

1.2 导入数据集

1.3 缺失值分析

2 构造训练数据

​3 模型训练

3.1 CNN-LSTM网络 

3.2 模型训练

4 模型预测


 专栏链接:https://blog.csdn.net/qq_41921826/category_12495091.html

1 数据处理

1.1 导入库文件

import scipy
import pandas as pd
import numpy as np
import math
import datetime
from matplotlib import pyplot as plt

# 导入深度学习框架tensorflow
import tensorflow as tf    
from tensorflow import keras 
from tensorflow.keras import Sequential, layers, callbacks
from tensorflow.keras.layers import Input, Reshape,Conv2D, MaxPooling2D, LSTM, Dense, Dropout, Flatten, Reshape

from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, mean_absolute_percentage_error 

# 忽略警告信息
import warnings
warnings.filterwarnings('ignore')  
plt.rcParams['font.sans-serif'] = ['SimHei']     # 显示中文
plt.rcParams['axes.unicode_minus'] = False  # 显示负号
plt.rcParams.update({'font.size':18})  #统一字体字号

1.2 导入数据集

实验数据集采用数据集6:澳大利亚电力负荷与价格预测数据(下载链接),数据集包括包括数据集包括日期、小时、干球温度、露点温度、湿球温度、湿度、电价、电力负荷特征,时间间隔30min。选取两年的数据进行实验,对数据进行可视化:

# 导入数据
data_raw = pd.read_excel("E:\\课题\\08数据集\\澳大利亚电力负荷与价格预测数据\\澳大利亚电力负荷与价格预测数据.xlsx")
data_raw = data_raw[-365*24*2*2-1:-1]
data_raw
from itertools import cycle
# 可视化数据
def visualize_data(data, row, col):
    cycol = cycle('bgrcmk')
    cols = list(data.columns)
    fig, axes = plt.subplots(row, col, figsize=(16, 4))
    fig.tight_layout()
    if row == 1 and col == 1:  # 处理只有1行1列的情况
        axes = [axes]  # 转换为列表,方便统一处理
    for i, ax in enumerate(axes.flat):
        if i < len(cols):
            ax.plot(data.iloc[:,i], c=next(cycol))
            ax.set_title(cols[i])
        else:
            ax.axis('off')  # 如果数据列数小于子图数量,关闭多余的子图
    plt.subplots_adjust(hspace=0.6)
    plt.show()

visualize_data(data_raw.iloc[:,2:], 2, 3)

​​

​单独查看部分功率数据,发现有较强的规律性。

​​

1.3 缺失值分析

首先查看数据的信息,发现并没有缺失值

data_raw.info()

​​进一步统计缺失值,通过统计数据可以看到,数据比较完整,不存在缺失值。其他异常值和数据处理可以自行处理。

data_raw.isnull().sum()

2 构造训练数据

选取数据集,去掉时间特征

data = data_raw.iloc[:,2:].values

构造训练数据,也是真正预测未来的关键。首先设置预测的timesteps时间步、predict_steps预测的步长(预测的步长应该比总的预测步长小),length总的预测步长,参数可以根据需要更改。

timesteps = 48*7 #构造x,为96*5个数据,表示每次用前96*5个数据作为一段
predict_steps = 48 #构造y,为96个数据,表示用后96个数据作为一段
length = 48 #预测多步,预测96个数据
feature_num = 5 #特征的数量

通过前5天的timesteps个数据预测后一天的predict_steps个数据,需要对数据集进行滚动划分(也就是前timesteps行的特征和后predict_steps行的标签训练,后面预测时就可通过timesteps行特征预测未来的predict_steps个标签)。因为是多变量,特征和标签分开划分。

# 构造数据集,用于真正预测未来数据
# 整体的思路也就是,前面通过前timesteps个数据训练后面的predict_steps个未来数据
# 预测时取出前timesteps个数据预测未来的predict_steps个未来数据。
# 单变量划分只需对单个变量划分,多变量划分特征和标签分开划分
def create_dataset(datasetx, datasety=None, timesteps=36, predict_size=6):
    datax = []  # 构造x
    datay = []  # 构造y
    for each in range(len(datasetx) - timesteps - predict_size):
        x = datasetx[each:each + timesteps]
        # 判断是否是单变量分解还是多变量分解
        if datasety is not None:
            y = datasety[each + timesteps:each + timesteps + predict_size]
        else:
            y = datasetx[each + timesteps:each + timesteps + predict_size, 0]
        datax.append(x)
        datay.append(y)
    return datax, datay

​​数据处理前,需要对数据进行归一化,按照上面的方法划分数据,这里返回划分的数据和归一化模型,因为是多变量,特征和标签分开归一化,不然后面归一化会有信息泄露的问题。函数的定义如下:

# 数据归一化操作
def data_scaler(datax, datay=None, timesteps=36, predict_steps=6):
    # 数据归一化操作
    scaler1 = MinMaxScaler(feature_range=(0, 1))   
    datax = scaler1.fit_transform(datax)
    # 用前面的数据进行训练,留最后的数据进行预测
    # 判断是否是单变量分解还是多变量分解
    if datay is not None:
        scaler2 = MinMaxScaler(feature_range=(0, 1))
        datay = scaler2.fit_transform(datay)
        trainx, trainy = create_dataset(datax, datay, timesteps, predict_steps)
        trainx = np.array(trainx)
        trainy = np.array(trainy)
        return trainx, trainy, scaler1, scaler2
    else:
        trainx, trainy = create_dataset(datax, timesteps=timesteps, predict_size=predict_steps)
        trainx = np.array(trainx)
        trainy = np.array(trainy)
        return trainx, trainy, scaler1, None

然后对数据按照上面的函数进行划分和归一化。通过前5天的96*5数据预测后一天的96个数据,需要对数据集进行滚动划分(也就是前96*5行的特征和后96行的标签训练,后面预测时就可通过96*5行特征预测未来的96个标签)

datax = data[:,:-1]
datay = data[:,-1].reshape(data.shape[0],1)
trainx, trainy, scaler1, scaler2 = data_scaler(datax, datay)

​3 模型训练

3.1 CNN-LSTM网络 

CNN-LSTM 是一种结合了 CNN 特征提取能力与 LSTM 对时间序列长期记忆能力的混合神经网络。

CNN 主要由四个层级组成, 分别为输入层、 卷积层、 激活层(Relu 函数)和池化层。 每一层都会将数据处理之后送到下一层, 其中最重要的是卷积层, 这个层级起到的作用是将特征数据进行卷积计算, 将计算好的结果传到激活层, 激活函数对数据进行筛选。最后一层是 LSTM 层, 这一层是根据 CNN 处理后的特征数据,对其模型进行进一步的维度修偏, 权重修正等工作, 为下一步输出精度较高的预测值做好准备, 在 LSTM 训练的过程中, 由于其神经网络内部包括了输入、 遗忘和输出门, 通常的做法是通过增减遗忘门和输入门的个数, 来控制算法的精度。
 

来源:基于改进的 CNN-LSTM 短期风功率预测方法研究

对于输入到 CNN-LSTM 的数据,首先,经过 CNN 的卷积层对局部特征进行提取,将提取后的特征向量传递到池化层进行特征向量的下采样和数据体量的压缩。然后,将经过卷积层和池化层处理后的特征向量经过一个扁平层转化成一维向量输入到 LSTM 中, 每一层 LSTM 后加一个随机失活层以防止模型过拟合。
 

3.2 模型训练

首先搭建模型的常规操作,然后使用训练数据trainx和trainy进行训练,进行50个epochs的训练,每个batch包含64个样本。此时input_shape划分数据集时每个x的形状。(建议使用GPU进行训练,因为本人电脑性能有限,建议增加epochs值)

# CNN_LSTM模型
def CNN_LSTM_model_train(trainx, trainy, timesteps, feature_num, predict_steps):
    # 调用GPU加速
    gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
    for gpu in gpus:
        tf.config.experimental.set_memory_growth(gpu, True)
    
    # 定义CNN-LSTM模型
    start_time = datetime.datetime.now()
    model = Sequential()
    model.add(Input((timesteps, feature_num)))
    model.add(Reshape((timesteps, feature_num, 1)))
    model.add(Conv2D(filters=64,
                    kernel_size=3,
                    strides=1,
                    padding="same",
                    activation="relu"))
    model.add(MaxPooling2D(pool_size=2, strides=1, padding="same"))
    model.add(Dropout(0.3))
    model.add(Reshape((timesteps, -1)))
    model.add(LSTM(128, return_sequences=True, dropout=0.2))  # 添加dropout层
    model.add(LSTM(64, return_sequences=False, dropout=0.2))  # 添加dropout层
    model.add(Dense(64, activation="relu"))  # 增加Dense层节点数量
    model.add(Dense(predict_steps))
    model.compile(loss="mean_squared_error", optimizer="adam", metrics=['mse'])
    model.summary()
    # 模型训练
    model.fit(trainx, trainy, epochs=50, batch_size=128)
    end_time = datetime.datetime.now()
    running_time = end_time - start_time
    # 保存模型
    model.save('CNN_LSTM_model.h5')

    # 返回构建好的模型
    return model

对划分的数据进行训练 

model = CNN_LSTM_model_train(trainx, trainy, timesteps, feature_num, predict_steps)

4 模型预测

首先加载训练好后的模型

# 加载模型
from tensorflow.keras.models import load_model
model = load_model('BiLSTM_model.h5')

准备好需要预测的数据,训练时保留了6天的数据,将前5天的数据作为输入预测,将预测的结果和最后一天的真实值进行比较。

y_true = datay[-timesteps-predict_steps:-timesteps]
x_pred = datax[-timesteps:]

预测并计算误差,并进行可视化,将这些步骤封装为函数。​​​​​​​

# 预测并计算误差和可视化
def predict_and_plot(x, y_true, model, scaler, timesteps):
    # 变换输入x格式,适应LSTM模型
    predict_x = np.reshape(x, (1, timesteps, feature_num))  
    # 预测
    predict_y = model.predict(predict_x)
    predict_y = scaler.inverse_transform(predict_y)
    y_predict = []
    y_predict.extend(predict_y[0])
    
    # 计算误差
    r2 = r2_score(y_true, y_predict)
    rmse = mean_squared_error(y_true, y_predict, squared=False)
    mae = mean_absolute_error(y_true, y_predict)
    mape = mean_absolute_percentage_error(y_true, y_predict)
    print("r2: %.2f\nrmse: %.2f\nmae: %.2f\nmape: %.2f" % (r2, rmse, mae, mape))
    
    # 预测结果可视化
    cycol = cycle('bgrcmk')
    plt.figure(dpi=100, figsize=(14, 5))
    plt.plot(y_true, c=next(cycol), markevery=5)
    plt.plot(y_predict, c=next(cycol), markevery=5)
    plt.legend(['y_true', 'y_predict'])
    plt.xlabel('时间')
    plt.ylabel('功率(kW)')
    plt.show()
    
    return y_predict
y_predict = predict_and_plot(x_pred, y_true, model, scaler2, timesteps)

最后得到可视化结果和计算的误差,可以通过调参和数据处理进一步提升模型预测效果。

  • r2: 0.19
  • ​​rmse: 725.34
  • mae: 640.73
  • mape: 0.08

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/240755.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

一些paper工具帮你搞定日常科研工作

如果你是在校生&#xff0c;科研er 你的日常避免各种各样的pepers&#xff1b;找papers&#xff0c;读papers&#xff0c;写papers。这三部曲贯穿这你整个科研工作&#xff0c;如何在有限的时间里&#xff0c;能够高效的完成科研&#xff0c;且保质保量&#xff0c;我们需要一些…

C# WPF上位机开发(内嵌虚拟机的软件开发)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 学习过halcon的同学都知道&#xff0c;它不仅有很多的图像算子可以使用&#xff0c;而且调试很方便。每一步骤的调试结果&#xff0c;都可以看到对…

MES系统设备日常点检:提升设备管理效率与维护质量

一、MES系统设备日常点检概述 MES系统设备日常点检是指通过MES系统对设备进行定期的外观、功能、性能等方面的检查&#xff0c;以评估设备的运行状态和潜在问题。这种检查方式有助于及时发现设备故障和隐患&#xff0c;确保设备的正常运行&#xff0c;提高生产效率。 二、MES系…

公益众筹源码系统:水滴筹模式+完整的安装包+部署教程

今天小编i来非大家来介绍一款公益众筹源码系统&#xff0c;带有完整的搭建教程。 一、系统开发 1.需求分析&#xff1a;在开发公益众筹源码系统之前&#xff0c;我们首先进行了深入的需求分析&#xff0c;明确了系统的目标、功能、性能等方面的要求。 2.技术选型&#xff1a;根…

什么是泊松图像混合

泊松图像混合&#xff08;Poisson Image Editing&#xff09;的原理基于泊松方程。该方法旨在保持图像中的梯度一致性&#xff0c;从而在图像编辑中实现平滑和无缝的混合。以下是泊松图像混合的基本原理和公式&#xff1a; 泊松方程 泊松方程是一个偏微分方程&#xff0c;通常…

【头歌系统Python实验】经典函数实例

目录 第1关&#xff1a;递归函数 - 汉诺塔的魅力 第2关&#xff1a;lambda 函数 - 匿名函数的使用 第3关&#xff1a;Map-Reduce - 映射与归约的思想 如果对你有帮助的话&#xff0c;不妨点赞收藏评论一下吧&#xff0c;爱你么么哒&#x1f618;❤️❤️❤️ 第1关&#xff…

Leetcode刷题笔记题解(C++):BM11 链表相加(二)

思路&#xff1a;先对两个链表进行反转&#xff0c;反转求和注意进位运算&#xff0c;求和完成之后再进行反转得到结果 /*** struct ListNode {* int val;* struct ListNode *next;* ListNode(int x) : val(x), next(nullptr) {}* };*/ #include <cstddef> class Soluti…

使用ffmpeg命令进行视频格式转换

1 ffmpeg介绍 FFmpeg 是一个非常强大和灵活的开源工具集&#xff0c;用于处理音频和视频文件。它提供了一系列的工具和库&#xff0c;可以用于录制、转换、流式传输和播放音频和视频。 FFmpeg 主要特点如下&#xff1a; 格式支持广泛&#xff1a;FFmpeg 支持几乎所有的音频和视…

AQS的应用

文章目录 1. 概述2. ReentrantLock 原理 什么是AQS 口述&#xff1a;全称是 AbstractQueuedSynchronizer&#xff0c;是一个框架&#xff0c;提供了这种 通用的同步器机制&#xff0c;它里面也是定义了很多的方法&#xff0c;像获取锁啊释放锁啊&#xff0c;其实释放啊获取啊是…

输出网络结构图,mmdetection

控制台输入&#xff1a;python tools/train.py /home/yuan3080/桌面/detection_paper_6/mmdetection-master1/mmdetection-master_yanhuo/work_dirs/lad_r50_paa_r101_fpn_coco_1x/lad_r50_a_r101_fpn_coco_1x.py 这个是输出方法里面的&#xff0c;不是原始方法。 如下所示&a…

Windows 下 PyTorch 入门深度学习环境安装与配置 GPU 版

1.确定自己的硬件信息&#xff0c;确定电脑有英伟达 (NVIDIA)显卡 在任务栏上右键打开任务管理器 2.下载安装 Anaconda &#xff08;建议安装迅雷下载&#xff0c;同时浏览器添加扩展 “迅雷Chrome支持”&#xff09; https://www.anaconda.com/ https://repo.anaconda.com/arc…

无需重启,修改Linux服务器时区

Linux修改服务器时区&#xff08;无需重启&#xff09; 1、复制命令&#xff1a;2、使用tzselect命令&#xff1a;3、使用date查看是否修改正确 1、复制命令&#xff1a; cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime2、使用tzselect命令&#xff1a; tzselect按照要…

GIT提交规范-范式和示例

关注公众号&#xff1a;”奇叔码技术“ 回复&#xff1a;“java面试题大全”或者“java面试题” 即可领取资料 主题&#xff1a;GIT提交规范 一、GIT提交范式 feat(功绩)&#xff1a; 新增 feature fix: 修复 bug docs: 仅仅修改了文档&#xff0c;比如 README, CHANGELOG, CO…

MISC之LSB

LSB隐写 简介 LSB隐写&#xff08;Least Significant Bit Steganography&#xff09;是一种隐写术&#xff0c;它通过将秘密信息嵌入到图像、音频或视频等多媒体文件中的最低有效位中来隐藏信息。在数字图像中&#xff0c;每个像素由红、绿、蓝三个通道的颜色值组成。每个颜色…

构建自己专属seata-server 镜像(分布式事务)?(第二篇)

码云地址&#xff1a;https://gitee.com/jessyxu/yc-seata-server 一.镜像构建前确保自己的seata-server 能够启动成功&#xff01; seata-server 官方建议&#xff1a;JDK版本不低于 1.8.0_281版本&#xff0c;兼容JDK 8、JDK11,可使用OpenJDK 8/11、Alibaba Dragonwell 8/、…

Java - Spring中Bean的循环依赖问题

什么是Bean的循环依赖 A对象中有B属性。B对象中有A属性。这就是循环依赖。我依赖你&#xff0c;你也依赖我。 比如&#xff1a;丈夫类Husband&#xff0c;妻子类Wife。Husband中有Wife的引用。Wife中有Husband的引用。 Spring解决循环依赖的机理 Spring为什么可以解决set s…

MSPM0L1306例程学习-ADC部分(2)

MSPM0L1306例程学习系列 使用的TI的官方例程&#xff0c;即SDK里边包含的例程代码。 可以到TI官网下载并且安装SDK: https://www.ti.com.cn/tool/cn/download/MSPM0-SDK/ MCU使用的是MSPM0L1306, 对于ADC部分&#xff0c;有10个例程&#xff1a; 前边讲了3个例程&#xff0c…

企业选CRM系统,这3个关键点你一定不能错过

在充满竞争的商业市场中&#xff0c;企业需要一种强大的工具来管理客户关系&#xff0c;从而提高销售效率。CRM客户关系管理软件就是企业所需要的。然而仅仅是在国内&#xff0c;CRM的供应商就超过了一千家&#xff0c;那么应该怎样选择适合企业的CRM系统&#xff1f; 一、软件…

设计模式——观察者模式(Observer Pattern)

概述 观察者模式是使用频率最高的设计模式之一&#xff0c;它用于建立一种对象与对象之间的依赖关系&#xff0c;一个对象发生改变时将自动通知其他对象&#xff0c;其他对象将相应作出反应。在观察者模式中&#xff0c;发生改变的对象称为观察目标&#xff0c;而被通知的对象称…

Python 自动化之处理docx文件(一)

批量筛选docx文档中关键词 文章目录 批量筛选docx文档中关键词前言一、做成什么样子二、基本架构三、前期输入模块1.引入库2.路径输入3.关键词输入 三、数据处理模块1.基本架构2.如果是docx文档2.1.读取当前文档内容2.2.遍历匹配关键字2.3.触发匹配并记录日志 3.如果目录下还有…