输出网络结构图,mmdetection

控制台输入:python tools/train.py /home/yuan3080/桌面/detection_paper_6/mmdetection-master1/mmdetection-master_yanhuo/work_dirs/lad_r50_paa_r101_fpn_coco_1x/lad_r50_a_r101_fpn_coco_1x.py

这个是输出方法里面的,不是原始方法。

如下所示,加一个print(model)就可以
,然后运行:控制台输入

之后,之后输出即可,如下所示:

在这里插入图片描述

LAD(
  (backbone): Res2Net(
    (stem): Sequential(
      (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (2): ReLU(inplace=True)
      (3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (5): ReLU(inplace=True)
      (6): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (8): ReLU(inplace=True)
    )
    (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (layer1): Res2Layer(
      (0): Bottle2neck(
        (conv1): Conv2d(64, 104, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(104, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): AvgPool2d(kernel_size=1, stride=1, padding=0)
          (1): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (convs): ModuleList(
          (0): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (2): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottle2neck(
        (conv1): Conv2d(256, 104, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(104, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (convs): ModuleList(
          (0): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (2): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (2): Bottle2neck(
        (conv1): Conv2d(256, 104, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(104, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (convs): ModuleList(
          (0): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (2): Conv2d(26, 26, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(26, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
    )
    (layer2): Res2Layer(
      (0): Bottle2neck(
        (conv1): Conv2d(256, 208, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): AvgPool2d(kernel_size=2, stride=2, padding=0)
          (1): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (pool): AvgPool2d(kernel_size=3, stride=2, padding=1)
        (convs): ModuleList(
          (0): Conv2d(52, 52, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (1): Conv2d(52, 52, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (2): Conv2d(52, 52, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottle2neck(
        (conv1): Conv2d(512, 208, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (convs): ModuleList(
          (0): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (2): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (2): Bottle2neck(
        (conv1): Conv2d(512, 208, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (convs): ModuleList(
          (0): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (2): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (3): Bottle2neck(
        (conv1): Conv2d(512, 208, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (convs): ModuleList(
          (0): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (2): Conv2d(52, 52, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(52, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
    )
    (layer3): Res2Layer(
      (0): Bottle2neck(
        (conv1): Conv2d(512, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): AvgPool2d(kernel_size=2, stride=2, padding=0)
          (1): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (2): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (pool): AvgPool2d(kernel_size=3, stride=2, padding=1)
        (convs): ModuleList(
          (0): Conv2d(104, 104, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (1): Conv2d(104, 104, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (2): Conv2d(104, 104, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottle2neck(
        (conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (convs): ModuleList(
          (0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (2): Bottle2neck(
        (conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (convs): ModuleList(
          (0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (3): Bottle2neck(
        (conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (convs): ModuleList(
          (0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (4): Bottle2neck(
        (conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (convs): ModuleList(
          (0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (5): Bottle2neck(
        (conv1): Conv2d(1024, 416, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(416, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (convs): ModuleList(
          (0): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (2): Conv2d(104, 104, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(104, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
    )
    (layer4): Res2Layer(
      (0): Bottle2neck(
        (conv1): Conv2d(1024, 832, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(832, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): AvgPool2d(kernel_size=2, stride=2, padding=0)
          (1): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (2): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
        (pool): AvgPool2d(kernel_size=3, stride=2, padding=1)
        (convs): ModuleList(
          (0): Conv2d(208, 208, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (1): Conv2d(208, 208, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (2): Conv2d(208, 208, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottle2neck(
        (conv1): Conv2d(2048, 832, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(832, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (convs): ModuleList(
          (0): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (2): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (2): Bottle2neck(
        (conv1): Conv2d(2048, 832, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(832, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (convs): ModuleList(
          (0): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (2): Conv2d(208, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        )
        (bns): ModuleList(
          (0): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
    )
  )
  init_cfg={'type': 'Pretrained', 'checkpoint': 'torchvision://resnet50'}
  (neck): FPN(
    (lateral_convs): ModuleList(
      (0): ConvModule(
        (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
      )
      (1): ConvModule(
        (conv): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
      )
      (2): ConvModule(
        (conv): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
      )
    )
    (fpn_convs): ModuleList(
      (0): ConvModule(
        (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      )
      (1): ConvModule(
        (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      )
      (2): ConvModule(
        (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      )
      (3): ConvModule(
        (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
      )
      (4): ConvModule(
        (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
      )
    )
  )
  init_cfg={'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'}
  (bbox_head): LADHead(
    (loss_cls): FocalLoss()
    (loss_bbox): GIoULoss()
    (relu): ReLU(inplace=True)
    (cls_convs): ModuleList(
      (0): ConvModule(
        (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (gn): GroupNorm(32, 256, eps=1e-05, affine=True)
        (activate): ReLU(inplace=True)
      )
      (1): ConvModule(
        (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (gn): GroupNorm(32, 256, eps=1e-05, affine=True)
        (activate): ReLU(inplace=True)
      )
      (2): ConvModule(
        (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (gn): GroupNorm(32, 256, eps=1e-05, affine=True)
        (activate): ReLU(inplace=True)
      )
      (3): ConvModule(
        (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (gn): GroupNorm(32, 256, eps=1e-05, affine=True)
        (activate): ReLU(inplace=True)
      )
    )
    (reg_convs): ModuleList(
      (0): ConvModule(
        (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (gn): GroupNorm(32, 256, eps=1e-05, affine=True)
        (activate): ReLU(inplace=True)
      )
      (1): ConvModule(
        (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (gn): GroupNorm(32, 256, eps=1e-05, affine=True)
        (activate): ReLU(inplace=True)
      )
      (2): ConvModule(
        (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (gn): GroupNorm(32, 256, eps=1e-05, affine=True)
        (activate): ReLU(inplace=True)
      )
      (3): ConvModule(
        (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (gn): GroupNorm(32, 256, eps=1e-05, affine=True)
        (activate): ReLU(inplace=True)
      )
    )
    (atss_cls): Conv2d(256, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (atss_reg): Conv2d(256, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (atss_centerness): Conv2d(256, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (scales): ModuleList(
      (0): Scale()
      (1): Scale()
      (2): Scale()
      (3): Scale()
      (4): Scale()
    )
    (loss_centerness): CrossEntropyLoss(avg_non_ignore=False)
  )

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/240741.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Windows 下 PyTorch 入门深度学习环境安装与配置 GPU 版

1.确定自己的硬件信息,确定电脑有英伟达 (NVIDIA)显卡 在任务栏上右键打开任务管理器 2.下载安装 Anaconda (建议安装迅雷下载,同时浏览器添加扩展 “迅雷Chrome支持”) https://www.anaconda.com/ https://repo.anaconda.com/arc…

无需重启,修改Linux服务器时区

Linux修改服务器时区(无需重启) 1、复制命令:2、使用tzselect命令:3、使用date查看是否修改正确 1、复制命令: cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime2、使用tzselect命令: tzselect按照要…

GIT提交规范-范式和示例

关注公众号:”奇叔码技术“ 回复:“java面试题大全”或者“java面试题” 即可领取资料 主题:GIT提交规范 一、GIT提交范式 feat(功绩): 新增 feature fix: 修复 bug docs: 仅仅修改了文档,比如 README, CHANGELOG, CO…

MISC之LSB

LSB隐写 简介 LSB隐写(Least Significant Bit Steganography)是一种隐写术,它通过将秘密信息嵌入到图像、音频或视频等多媒体文件中的最低有效位中来隐藏信息。在数字图像中,每个像素由红、绿、蓝三个通道的颜色值组成。每个颜色…

构建自己专属seata-server 镜像(分布式事务)?(第二篇)

码云地址:https://gitee.com/jessyxu/yc-seata-server 一.镜像构建前确保自己的seata-server 能够启动成功! seata-server 官方建议:JDK版本不低于 1.8.0_281版本,兼容JDK 8、JDK11,可使用OpenJDK 8/11、Alibaba Dragonwell 8/、…

Java - Spring中Bean的循环依赖问题

什么是Bean的循环依赖 A对象中有B属性。B对象中有A属性。这就是循环依赖。我依赖你,你也依赖我。 比如:丈夫类Husband,妻子类Wife。Husband中有Wife的引用。Wife中有Husband的引用。 Spring解决循环依赖的机理 Spring为什么可以解决set s…

MSPM0L1306例程学习-ADC部分(2)

MSPM0L1306例程学习系列 使用的TI的官方例程,即SDK里边包含的例程代码。 可以到TI官网下载并且安装SDK: https://www.ti.com.cn/tool/cn/download/MSPM0-SDK/ MCU使用的是MSPM0L1306, 对于ADC部分,有10个例程: 前边讲了3个例程&#xff0c…

企业选CRM系统,这3个关键点你一定不能错过

在充满竞争的商业市场中,企业需要一种强大的工具来管理客户关系,从而提高销售效率。CRM客户关系管理软件就是企业所需要的。然而仅仅是在国内,CRM的供应商就超过了一千家,那么应该怎样选择适合企业的CRM系统? 一、软件…

设计模式——观察者模式(Observer Pattern)

概述 观察者模式是使用频率最高的设计模式之一,它用于建立一种对象与对象之间的依赖关系,一个对象发生改变时将自动通知其他对象,其他对象将相应作出反应。在观察者模式中,发生改变的对象称为观察目标,而被通知的对象称…

Python 自动化之处理docx文件(一)

批量筛选docx文档中关键词 文章目录 批量筛选docx文档中关键词前言一、做成什么样子二、基本架构三、前期输入模块1.引入库2.路径输入3.关键词输入 三、数据处理模块1.基本架构2.如果是docx文档2.1.读取当前文档内容2.2.遍历匹配关键字2.3.触发匹配并记录日志 3.如果目录下还有…

ajax和Axios快速入门

什么是ajax 概念: Asynchronous JavaScript And XML,异步的JavaScrip和XML,重点在异步。 作用: 1,数据交互,可以通过ajax给服务器发送请求,并获取服务器响应的数据。 2,异步交互&am…

SSD Wear Leveling磨损均衡,并不是一直有效,甚至有负面作用!-part1

1.引言 上一篇WL基础文章中,我们介绍了SSD为何需要Wear Leveling磨损均衡的基本原理和分类,阅读本文之前,建议先了解WL磨损均衡的相关背景: 扩展阅读:深入解析SSD Wear Leveling磨损均衡技术:如何让你的硬…

什么是循环依赖,如何解决

目录 什么是循环依赖? 循环依赖的原因: 如何解决循环依赖问题? 最佳实践和注意事项: 结论: 当在使用 Spring Boot 进行开发时,循环依赖(Circular Dependency)可能会成为一个常见…

C语言之数组精讲(1)

目录 数组 数组的声明(使用数组前的准备) 访问数组(数组的使用方法) 数组的遍历 数组初始化 1.在声明变量时,除了必要的情况下,都需要对变量进行初始化。 2.我们还可以像下面在声明数组时不指定元素…

mitm抓包实践---可用于投票、日常类任务运用

文章目录 一、安装mitm二、证书导入三、抓包三、后话补充 一、安装mitm 第一种方式: 官网下载 https://mitmproxy.org/downloads/ 第二种方式: py库安装 pip install mitmproxy我是第一种,不熟悉py 二、证书导入 下载证书: http://mitm.it/ 首先你要开启代理&am…

【MySQL】MySQL库的操作

MySQL库的操作 一、创建数据库创建数据库案例字符集和校验规则校验规则对数据库的影响 二、操纵数据库1、查看数据库2、查看当前正在使用的数据库3、使用数据库4、显示创建语句5、数据库删除6、数据库的修改7、备份和恢复8、查看连接情况 一、创建数据库 创建数据库的语法如下…

HarmonyOS第一课ArkTS开发语言(TypeScript快速入门)

编程语言介绍 ArkTS是HarmonyOS优选的主力应用开发语言。它在TypeScript(简称TS)的基础上,匹配ArkUI框架,扩展了声明式UI、状态管理等相应的能力,让开发者以更简洁、更自然的方式开发跨端应用。要了解什么是ArkTS&…

C语言:高精度乘法

P1303 A*B Problem - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 第一次画图&#xff0c;略显简陋。 由图可以看出c的小标与x,y下标的关系为x的下标加上y的下标再减一。 由此得到&#xff1a; c [ i j - 1 ] x [ i ] * y [ j ]x #include<stdio.h> #include<st…

(第67天)RMAN Duplicate 克隆 PDB

介绍 在之前 NONCDB 版本我们经常使用 RMAN Duplicate 方式来在线搭建 DataGuard,非常方便快捷。从 12C 开始 Oracle 推出了 CDB 架构后,自然也就支持使用 Duplicate 的方式来复制 CDB,但是 12C 时还没有那么智能。 从 18C 开始进行了升级,可以支持使用 RMAN Duplicate 方…

react-webApp--响应式布局

rem响应式布局 移动端响应式布局 1.自己实现&#xff0c;需要设计好初始换算比&#xff0c;设为100px方便计算 <meta name"viewport" content"widthdevice-width, initial-scale1.0, maximum-scale1.0, minimum-scale1.0, user-scalableno"/> <…