《opencv实用探索·十八》Camshift进行目标追踪流程

CamShift(Continuously Adaptive Mean Shift)是一种用于目标跟踪的方法,它是均值漂移(Mean Shift)的扩展,支持对目标的旋转跟踪,能够对目标的大小和形状进行自适应调整。

cv::CamShift和cv::meanShift区别:
cv::meanShift: 这是一种用于均值漂移目标跟踪的算法。它基于颜色直方图的均值漂移,寻找输入图像中与模板颜色直方图最相似的区域。在这个算法中,窗口的位置根据均值漂移进行调整,直到找到目标对象。cv::meanShift 返回找到的目标的矩形区域。但它的不足之处在于检测窗口的大小是固定的,而目标是不断变化的比如由近到远,各种旋转,固定的窗口是不合适的。

cv::CamShift: 这是 cv::meanShift 的扩展,用于在图像中寻找旋转目标的位置。cv::CamShift 在 cv::meanShift 的基础上引入了旋转矩形,使得它能够更好地适应旋转目标的情况。实际上,cv::CamShift 返回的是一个旋转矩形(cv::RotatedRect),而不仅仅是矩形。同时,能够对目标的大小和形状进行自适应调整,适用于目标尺寸和形状变化较大的情况下。

下面左图是meanShift,右图是CamShift追踪效果对比,可以看到随着目标有近到远变小,meanShfit追踪窗口始终固定不变,而CamShift能实时变化。
在这里插入图片描述

meanShift原理:
在这里插入图片描述
图中一堆点集,任意位置有个圆形窗口(黑色圆),可以看到窗口的圆心(点1位置)和窗口的质心(点2位置)并不重合,那么这个窗口的圆心便会向质心的方向移动,当圆心1与质心2大致重合时圆的位置大概在红色圆的位置,此时在被红色圆覆盖的点集中3的位置为点集最密集的地方,此时红色圆的质心又被更新到3的位置,那么圆便会继续从2的位置向3的位置移动。
不断执行上面的过程直到圆心最终和质心大致重合。每次迭代移动的矢量即meanShift。

meanShift算法的基本思路:
先设置一个感兴趣窗口(通常为矩形),计算窗口内像素的颜色直方图作为目标对象,根据目标对象的颜色分布,通过不断迭代计算窗口的平均漂移来更新窗口的位置和大小,从而实现目标的实时跟踪。
camShift算法原理是在meanShift基础上加入了自适应调整目标窗口大小和旋转方向实现目标的实时跟踪。

利用opencv的camShift算法来追踪目标:

RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
                                   TermCriteria criteria );

probImage:表示概率图像,通常是反向投影的结果。反向投影是基于目标的颜色直方图,用于估计在图像中的可能位置。
window:输入时表示追踪的初始窗口,输出时表示找到的新窗口。这是一个矩形,也就是目标区域的初始位置。
criteria:指定迭代的停止条件,通常是一个 cv::TermCriteria 类型的对象。它定义了迭代的最大次数、最小精度,或两者的组合。
cv::CamShift 函数返回一个 cv::RotatedRect 对象,它表示找到的目标的位置、方向和大小。

camShift追踪流程:
(1)首先在图像上选定一个目标区域(通常为矩形)
(2)计算选定区域的直方图分布,一般是HSV色彩空间的直方图。
(3)对下一帧图像B同样计算直方图分布。
(4)计算图像B当中与选定区域直方图分布最为相似的区域,即比较图像B的直方图和目标对象的直方图,生成一个反向投影图像。这个反向投影图像的每个像素值表示图像B该位置的像素值与目标对象直方图的相似程度。(反向投影图像可以将图像中与给定模式(目标对象)具有相似颜色分布的区域显著地突出显示)
(5)使用camshift算法将选定区域沿着最为相似的部分进行移动,直到找到最相似的区域,便完成了在图像b中的目标追踪。
(6)重复3到5的过程,就完成整个视频目标追踪。

下面是代码示例:

#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
//-----------------------------------【全局变量声明】-----------------------------------------
//		描述:声明全局变量
//-------------------------------------------------------------------------------------------------
Mat image;
bool selectObject = false;
Point origin;
Rect selection;
int vmin = 10, vmax = 255, smin = 30;
bool isSelectRoi = false;
bool targetTrackingEnable = false;
Mat roi_hist;
int channels[] = { 0 };
int histSize = 180;  //bin分为180份
float range[] = { 0, 180 };
const float* histRange = { range };
TermCriteria term_crit_; 

//--------------------------------【onMouse( )回调函数】------------------------------------
//		描述:鼠标操作回调
//-------------------------------------------------------------------------------------------------
static void onMouse(int event, int x, int y, int, void*)
{
	if (selectObject)
	{
		selection.x = MIN(x, origin.x);
		selection.y = MIN(y, origin.y);
		selection.width = std::abs(x - origin.x);
		selection.height = std::abs(y - origin.y);

		selection &= Rect(0, 0, image.cols, image.rows);
	}

	switch (event)
	{
	case EVENT_LBUTTONDOWN:
		origin = Point(x, y);
		selection = Rect(x, y, 0, 0);
		selectObject = true;
		targetTrackingEnable = false;
		break;

	case EVENT_LBUTTONUP:
		selectObject = false;
		if (selection.width > 0 && selection.height > 0)
			isSelectRoi = true;
		break;
	}
}

int main(int argc, const char** argv)
{

	VideoCapture cap;
	Rect trackWindow;
	int hsize = 16;
	float hranges[] = { 0,180 };
	const float* phranges = hranges;

	cap.open(0);

	if (!cap.isOpened())
	{
		cout << "不能初始化摄像头\n";
	}

	namedWindow("Histogram", 0);
	namedWindow("CamShift Demo", 0);
	setMouseCallback("CamShift Demo", onMouse, 0);
	//设置滚动条可以在二值化图像时实时改变阈值
	createTrackbar("Vmin", "CamShift Demo", &vmin, 256, 0);
	createTrackbar("Vmax", "CamShift Demo", &vmax, 256, 0);
	createTrackbar("Smin", "CamShift Demo", &smin, 256, 0);

	Mat frame;

	for (;;)
	{
		cap >> frame;
		if (frame.empty())
			break;
		frame.copyTo(image);

		if (isSelectRoi)
		{
			//获取第一帧图像并指定ROI区域
			Mat roi_hsv;
			Mat roi = image(selection); //截取鼠标绘制的roi
			cvtColor(roi, roi_hsv, COLOR_BGR2HSV);  //把roi图像转为hsv色彩图像

			//去除低亮度值,二值化图像,低亮度置0,高亮度置1
			Mat mask;
			int _vmin = vmin, _vmax = vmax;
			inRange(roi_hsv, Scalar(0, smin, MIN(_vmin, _vmax)),
				Scalar(180, 255, MAX(_vmin, _vmax)), mask);

			//计算直方图
			/*
			在HSV颜色空间中,H(色相)的取值范围是[0, 360),而在OpenCV中,H通道的取值范围被映射到[0, 180)。这是因为OpenCV中对H通道的取值范围进行了缩放,将360度映射到了180度。

			所以,在使用 calcHist 函数计算直方图时,range[] 参数用于指定每个通道的取值范围。对于HSV颜色空间中的H通道,这里使用的是[0, 180)。这确保了直方图的统计考虑了整个H通道的取值范围。

			如果你的颜色空间是RGB,而不是HSV,那么在计算直方图时,range[] 参数应该是[0, 256)。这样就能覆盖RGB图像中每个通道的所有可能取值。
			*/
			calcHist(&roi_hsv, 1, channels, mask, roi_hist, 1, &histSize, &histRange);
			// 归一化
			normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX);

			// 4. 目标追踪
			// 4.1 设置窗口搜索终止条件:最大迭代次数,窗口中心漂移最小值
			TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1);
			term_crit_ = term_crit;

			waitKey(30);
			isSelectRoi = false;
			targetTrackingEnable = true;
		}
		else if (targetTrackingEnable)
		{
			// 4.2 计算直方图的反向投影
			Mat hsv;
			cvtColor(image, hsv, COLOR_BGR2HSV);  //把输入图像转为hsv色彩图像
			Mat backProject;
			cv::calcBackProject(&hsv, 1, channels, roi_hist, backProject, &histRange);

			// 4.3	进行meanshift追踪
			RotatedRect track_box = cv::CamShift(backProject, selection, term_crit_);

			// 4.4 将追踪的位置绘制在视频上,并进行显示
			ellipse(image, track_box, Scalar(0, 0, 255), 2);
			imshow("CamShift Demo", image);

			if (waitKey(30) == 'q')
				break;

		}

		if (selectObject && selection.width > 0 && selection.height > 0)
		{
			Mat roi(image, selection);
			bitwise_not(roi, roi);
		}

		imshow("CamShift Demo", image);
		if (waitKey(30) == 'q')
			break;
	}

	// 5. 资源释放
	cap.release();
	destroyAllWindows();

	return 0;
}

效果展示:
在这里插入图片描述

Camshift的优点:简单,计算量较少,因为Camshift的本质就局部检测,在局部里检测“密度”最大的位置。
Camshift的缺点:Camshift的优点有时候也正是其缺点,因为其简单,所以对于复杂背景或者纹理丰富的物体跟踪效果较差。因为Camshift是对直方图反投影所形成的二值图像进行处理的,如果背景较为复杂或者物体的纹理较为丰富,那么此二值图像的噪声就很多(具体原因可参考直方图反投影的原理),这将直接干扰Camshift对物体位置的判断。
所以对Camshift的总结为:Camshift适用于物体表面颜色较为单一,且和背景颜色差距较大

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/238985.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

051:vue项目webpack打包后查看各个文件大小

第050个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 &#xff08;1&#xff09;提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使…

SSM与SpringBoot面试题总结

什么是spring&#xff1f;谈谈你对IOC和AOP的理解。 Spring:是一个企业级java应用框架&#xff0c;他的作用主要是简化软件的开发以及配置过程&#xff0c;简化项目部署环境。 Spring的优点: 1、Spring低侵入设计&#xff0c;对业务代码的污染非常低。 2、Spring的DI机制将…

scala编码

1、Scala高级语言 Scala简介 Scala是一门类Java的多范式语言&#xff0c;它整合了面向对象编程和函数式编程的最佳特性。具体来讲Scala运行于Java虚拟机&#xff08;JVM)之上&#xff0c;井且兼容现有的Java程序&#xff0c;同样具有跨平台、可移植性好、方便的垃圾回收等特性…

JavaWeb三大组件(Servlet程序、Filter过滤器、Listener监听器)

文章目录 一、Servlet1、Servlet概述和运行流程2、开发过程&#xff08;xml和注解方式&#xff09;3、Servlet生命周期4、Servlet继承结构4.1、Servlet规范接口4.2、ServletConfig配置接口4.3、GenericServlet抽象类4.4、HttpServlet抽象类 5、ServletConfig和ServletContext6、…

解决高风险代码:Header Manipulation

Abstract HTTP 响应头文件中包含未验证的数据会引发 cache-poisoning、 cross-site scripting、 cross-user defacement、 page hijacking、 cookie manipulation 或 open redirect Explanation 以下情况中会出现 Header Manipulation 漏洞&#xff1a; 1. 数据通过一个不可信…

《opencv实用探索·十七》calcBackProject直方图反向投影

在了解反向投影前需要先了解下直方图的概念&#xff0c;可以看我上一章内容&#xff1a;opencv直方图计算calcHist函数解析 直方图反向投影是一种图像处理技术&#xff0c;通常用于目标检测和跟踪。通过计算反向投影&#xff0c;可以将图像中与给定模式&#xff08;目标对象&a…

Next.js中的App Router与Page Router,各自的作用和使用方式,如何理解和配置使用?

App Router介绍 Next.js中的App Router是全局的路由器&#xff0c;它用于在应用程序的所有页面之间进行导航。它可以用于在页面之间传递状态和数据&#xff0c;类似于React中的Context。 App Router是通过_app.js文件中的getInitialProps方法来配置的。 在 Next.js 中&#xf…

“产学研用”深度融合,校企合作助力烟花产业数字化发展

为推动烟花行业数字化转型升级&#xff0c;充分发挥科教资源优势&#xff0c;技术成果及创新资源&#xff0c;推动构建产学研用高效协同&#xff0c;加快提升烟花产业创新能力&#xff0c;助力企业在国内外复杂的市场环境下提升发展能力及竞争能力。12月6日&#xff0c;烟花生产…

机器学习-KL散度的直观理解+代码

KL散度 直观理解&#xff1a;KL散度是一种衡量两个分布之间匹配程度的方法。通常在概率和统计中&#xff0c;我们会用更简单的近似分布来代替观察到的数据或复杂的分布&#xff0c;KL散度帮我们衡量在选择近似值时损失了多少信息。 在信息论或概率论中&#xff0c;KL散度&#…

Python实战 | 如何抓取腾讯视频

嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 爬虫: 作用: 批量采集数据 / 模拟用户行为 原理: 模拟成 客户端 向 服务器 发送网络请求 环境介绍: python 3.8 解释器 pycharm 编辑器 第三方模块: reques…

鸿蒙Stage模型开发—创建你的第一个ArkTS应用

Stage模型开发概述 基本概念 下图展示了Stage模型中的基本概念。 图1 Stage模型概念图 UIAbility组件和ExtensionAbility组件 Stage模型提供UIAbility和ExtensionAbility两种类型的组件&#xff0c;这两种组件都有具体的类承载&#xff0c;支持面向对象的开发方式。UIAbility…

数字化转型:无形资产占比测算数据集(2007-2022年)

参考张永珅老师的做法&#xff0c;利用无形资产占比测算数字化转型程度。希望对大家有所帮助 一、数据介绍 数据名称&#xff1a;数字化转型&#xff1a;无形资产占比 数据年份&#xff1a;2007-2022年 样本数量&#xff1a;37649条 数据说明&#xff1a;包括数字化资产明细…

漏洞复现-某友UFIDA NC系统某接口未授权访问漏洞(附漏洞检测脚本)

免责声明 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的…

玩家不爱打丧尸后,游戏策划们卷起了编鬼故事

​全球毁灭&#xff0c;病毒入侵。躲避丧尸&#xff0c;收集物资&#xff0c;打造专属的避难所&#xff0c;一步步在混乱的末世中生存下来。 作为开放世界游戏里最经典的赛道&#xff0c;末日题材时至今日仍旧饱受广大玩家的喜爱。玩家在生存压力的刺激下&#xff0c;想方设法…

创建第一个Vue2项目-----HelloWorld

创建第一个Vue项目 第一步先去安装Vue&#xff0c;一共有两种安装方式&#xff0c;这里使用 点击这里下载&#xff1a;Vue.js 添加到自己的项目中 在使用的页面引入<script src"../js/vue.js"></script> 2. 准备好一个容器 <div id"root&qu…

自定义Taro的navBar 组件

由于业务特定&#xff0c;头部的内容会不大相同 下面是自定义的navBar 组件 首先在index.config.ts 文件中 将navigationStyle设置‘custom’&#xff0c;这样头部自带的内容就不会存在 &#xff0c;自定义navBar 这里自定义了一个计算不同设备头部胶囊的高度hook-useCustomNa…

资深测试总结,性能测试目的如何做?主要看什么指标?

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、性能测试是什么…

Windows安装Tesseract OCR与Python中使用pytesseract进行文字识别

文章目录 前言一、下载并安装Tesseract OCR二、配置环境变量三、Python中安装使用pytesseract总结 前言 Tesseract OCR是一个开源OCR&#xff08;Optical Character Recognition&#xff09;引擎&#xff0c;用于从图像中提取文本。Pytesseract是Tesseract OCR的Python封装&am…

物联网终端设备众多,为何遥测终端机备受瞩目?

遥测终端机是一种用于数据采集、远程传输、数据存储与处理的综合体设备&#xff0c;已逐渐成为现代智能物联领域的焦点。遥测终端机集成了多种传感器与通信模块&#xff0c;能够实时采集各种环境参数&#xff0c;如温度、湿度、压力、流量等&#xff0c;同时支持无线通信&#…

9.9万做直升机产权项目合伙人 | 新机遇,共享千亿财富

你曾想过能开直升机&#xff1f;甚至想拥有一架直升机&#xff1f;那种飞跃人生的心境&#xff0c;翱翔蓝天白云。可面临居多疑问&#xff0c;比如&#xff1a;学开直升机需要怎样的条件&#xff08;年龄、学历、费用、学习内容及周期等&#xff09;?到哪里学/买直升机比较安全…