做数据分析为何要学统计学(3)——何为置信区间?它有什么作用?

置信区间是统计学中的一个重要工具,用以使用样本参数(\bar u ,\sigma)来估计总体均值在某置信水平下的范围。通俗一点讲,如果置信度为95%(等价于显著水平a=0.05),置信区间为[a,b],这就意味着总体均值落入该区间的概率为95%。

一般情况下当我们抽样的数量大于等于30时,可认为样本均值服从正态分布,以此我们通过查标准正态分布表,或者显著水平a下的z值,然后即可获得置信区间。如下

[\bar u-\frac{|z_a|}{\sqrt n}*\sigma ,\bar u+\frac{|z_a|}{\sqrt n}*\sigma]

 如果样本数量小于30,则查t分布表,确定置信区间。

比如工厂要确定95%置信水平下的产品成份含量的置信区间,但手里只有20个样本数据,如何来估计总体的成分含量呢?我们可以对这20个样本数据进行30轮重复采样,每次随机采样10件产品,记录其均值。这样会得到30个样本均值。根据中心极限定理,这30个样本服从正态分布,于是我们就可以用这30个样本均值的均值及标准差,来估计总体的成分含量区间了。

 示例代码如下:

#初始化样本
X=np.array([91,94,91,94,97,83,91,95,94,96,97,95,90,91,95,91,88,85,89,93])

#样本排序,为了适应下面的随机抽样函数
X=sorted(X)

#使用random模块的随机抽样函数sample,进行抽样。该函数有两个参数,第一个是样本集合,第二个是抽取数量
import random

#进行30轮随机抽样同时计算均值,形成新的正态分布的样本
n=30
X_new=[np.mean(random.sample(X, 10)) for i in range(n)]
X_new

#计算样本均值和标准差
mu,std=np.mean(X_new),np.std(X_new)
mu,std

#求置信区间
[mu-std/np.sqrt(n)*1.96,mu+std/np.sqrt(n)*1.96]

最终估计的总体均值置信区间为[91.69440711928762, 92.17892621404569]。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/237512.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

虹科Pico汽车示波器 | 汽车免拆检修 | 2019款别克GL8豪华商务车前照灯水平调节故障

一、故障现象 一辆2019款别克GL8豪华商务车,搭载LTG发动机,累计行驶里程约为10.7万km。车主反映,车辆行驶过程中组合仪表提示前照灯水平调节故障。 二、故障诊断 接车后试车,起动发动机,组合仪表上提示“前照灯水平调节…

Spring Boot监听redis过期的key

Redis支持过期监听&#xff0c;可以实现监听过期数据&#xff0c;实现过程如下 1、pom依赖 <!-- Redis--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></depend…

ChatGPT/GPT4应用:文本、论文、编程、绘图等,提高工作效率及科研项目开发能力

2023年随着OpenAI开发者大会的召开&#xff0c;最重磅更新当属GPTs&#xff0c;多模态API&#xff0c;未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…

深入理解模板引擎:解锁 Web 开发的新境界(下)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

Android蓝牙协议栈fluoride(五) - 设备管理(bt application)

在上一篇Android蓝牙协议栈fluoride(四) - 设备管理(bt interface) 中梳理了设备管理器对上层提供的接口&#xff0c;本文将介绍这些接口的具体实现。 各个模块中采用了API状态机数据收发的方式&#xff0c;介绍设备管理时也将采用这个顺序介绍。 核心数据结构 设备管理的核…

鸿蒙HarmonyOS4.0 入门与实战

一、开发准备: 熟悉鸿蒙官网安装DevEco Studio熟悉鸿蒙官网 HarmonyOS应用开发官网 - 华为HarmonyOS打造全场景新服务 应用设计相关资源: 开发相关资源: 例如开发工具 DevEco Studio 的下载 应用发布: 开发文档:

论文阅读《High-frequency Stereo Matching Network》

论文地址&#xff1a;https://openaccess.thecvf.com/content/CVPR2023/papers/Zhao_High-Frequency_Stereo_Matching_Network_CVPR_2023_paper.pdf 源码地址&#xff1a; https://github.com/David-Zhao-1997/High-frequency-Stereo-Matching-Network 概述 在立体匹配研究领域…

OpenAI承认GPT-4变懒,即将发布修复方案提升性能

目录 1OpenAI承认GPT-4变懒&#xff0c;即将发布修复方案提升性能 2一文秒懂人工智能全球近况 1OpenAI承认GPT-4变懒&#xff0c;即将发布修复方案提升性能 **划重点:** 1. &#x1f92f; 用户反馈:GPT-4使用者抱怨OpenAI破坏了体验&#xff0c;称模型几乎“害怕”提供答案。…

UE4 透明物体不渲染显示??

问题描述&#xff1a;半透明特效在背景&#xff08;半透明材质模型&#xff09;前&#xff0c;当半透明特效开始移动的时候&#xff0c;随着速度的加快会逐渐不渲染&#xff01; 解决办法&#xff1a; 1.设置透明度排序 2.如果还没效果&#xff0c;修改半透明背景模型以下材质…

安全开发:身份认证方案之 Google 身份验证器和基于时间的一次性密码 TOTP 算法

参考资料在文末注明&#xff0c;如本文有错漏欢迎评论区指出&#x1f44f; 目前很多应用都逐步采用了双因子认证或者说MFA认证方案&#xff0c;因此本文介绍一下背后的机制和TOTP算法原理。使用TOTP算法&#xff0c;只要满足两个条件&#xff1a;1&#xff09;基于相同的密钥&…

HTML行内元素和块级元素的区别? 分别有哪些?

目录 一、行内元素和块级元素的区别二、行内元素和块级元素分别有哪些1、行内元素2、块级元素 一、行内元素和块级元素的区别 1、行内元素不会占据整行&#xff0c;在一条直线上排列&#xff0c;都是同一行&#xff0c;水平方向排列&#xff1b;    2、块级元素可以包含行内…

订单接入支付宝流程实战与优化

概述 了解支付宝支付能力接入方式。电商项目如何对支付流程进行设计及优化。基于 RocketMQ 事务消息实现的订单确认机制&#xff0c;来完成订单超时回退功能。 支付宝接入流程简介 国内目前有支付牌照的公司总共只有两百来家&#xff0c;比如支付宝、云闪付、和包支付、翼支…

《PySpark大数据分析实战》-02.了解Hadoop

&#x1f4cb; 博主简介 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是wux_labs。&#x1f61c; 热衷于各种主流技术&#xff0c;热爱数据科学、机器学习、云计算、人工智能。 通过了TiDB数据库专员&#xff08;PCTA&#xff09;、TiDB数据库专家&#xff08;PCTP…

Flutter:web项目跨域问题解决

前后端解决系列 文章目录 一、Flutter web客户端解决本地环境调试跨域问题二、Flutter web客户端解决线上环境跨域问题 一、Flutter web客户端解决本地环境调试跨域问题 就一句命令【--web-browser-flag "--disable-web-security"】&#xff0c;用来屏蔽浏览器域名请…

axios 基础的 一次封装 二次封装

一、平常axios的请求发送方式 修改起来麻烦的一批 代码一大串 二、axios的一次封装 我们会在src/utils创建一个request.js的文件来存放我们的基地址与拦截器 /* 封装axios用于发送请求 */ import axios from axios/* (1)request 相当于 Axios 的实例对象 (2)为什么要有reque…

件夹和文件比较软件VisualDiffer mac功能介绍

VisualDiffer mac是一款运行在MacOS上的文件夹和文件快速比较工具。VisualDiffer可以对不同文件夹中文件或文档做出比较或者比较两个文件的路径。还可以通过UNIS diff命令快速、标准和可靠的比较出各类不同的文件夹和文件结果&#xff0c;使用不同的颜色直观地显示。 VisualDif…

西南科技大学数字电子技术实验四(基本触发器逻辑功能测试及FPGA的实现)预习报告

一、计算/设计过程 说明:本实验是验证性实验,计算预测验证结果。是设计性实验一定要从系统指标计算出元件参数过程,越详细越好。用公式输入法完成相关公式内容,不得贴手写图片。(注意:从抽象公式直接得出结果,不得分,页数可根据内容调整) (1)D触发器 特征方程: Q…

事务的四个特性、四个隔离级别以及数据库的常用锁

事务的四个特性、四个隔离级别以及数据库的常用锁 四大特性 事务的四大特性&#xff0c;通常被称为ACID特性&#xff0c;是数据库管理系统&#xff08;DBMS&#xff09;确保事务处理的关键属性。这四大特性分别是&#xff1a; 原子性&#xff08;Atomicity&#xff09;&#x…

微服务-理论 分布式事务

一、分布式事务理论模型 分布式事务问题也叫分布式数据一致性问题&#xff0c;简单来说就是如何在分布式场景中保证多个节点数据的一致性。分布式事务产生的核心原因在于存储资源的分布性&#xff0c;比如多个数据库&#xff0c;或者MySQL和Redis两种不同存储设备的数据一致性…

安装ThingBox Eclipse Plugin

1. ChatGPT问 The latest version of the ThingBox Eclipse Plugin requires Eclipse IDE 2021-06 or later. 2. PTC官网下载 MED-61378-CD-092_F000_Eclipse-Plugin-9-0-1.zip文件, 和 MED-61098-CD-085_F000_ThingWorx-Extension-SDK-8-5-0&#xff08;需要账号&#xff09…