从线性回归到神经网络

一、线性回归关键思想

1、线性模型

2、基础优化算法


二、线性回归的从零开始实现

       在了解线性回归的关键思想之后,我们可以开始通过代码来动手实现线性回归了。在这一节中,我们将从零开始实现整个方法,包括数据流水线、模型、损失函数和小批量随机梯度下降优化器。虽然现代的深度学习框架几乎可以自动化地进行所有这些工作,但从零开始实现可以确保我们真正知道自己在做什么。同时,了解更细致的工作原理将方便我们自定义模型、自定义层或自定义损失函数。在这一节中,我们将只使用张量和自动求导。在之后的章节中,我们会充分利用深度学习框架的优势,介绍更简洁的实现方式。

0、导包

import random
import torch
from d2l import torch as d2l

1、生成数据集

       为了简单起见,我们将根据带有噪声的线性模型构造一个人造数据集。我们的任务是使用这个有限样本的数据集来恢复这个模型的参数。我们将使用低维数据,这样可以很容易地将其可视化。

       在下面的代码中,我们生成一个包含1000个样本的数据集,每个样本包含从标准正态分布中采样的2个特征。我们的合成数据集是一个矩阵$\mathbf{X}\in \mathbb{R}^{1000 \times 2}$(我们使用线性模型参数$\mathbf{w} = [2, -3.4]^\top$$b = 4.2$和噪声项$\epsilon$生成数据集及其标签):

$\mathbf{y}= \mathbf{X} \mathbf{w} + b + \mathbf\epsilon.$

       $\epsilon$可以视为模型预测和标签时的潜在观测误差。在这里我们认为标准假设成立,即$\epsilon$服从均值为0的正态分布。为了简化问题,我们将标准差设为0.01。

       下面的代码生成合成数据集。

def synthetic_data(w, b, num_examples):  #@save
    """
    生成y=Xw+b+噪声
    w:真实权重 b:真实偏差量 num_examples:生成数据数量
    """
    X = torch.normal(0, 1, (num_examples, len(w)))  # 生成元素均值为0、标准差为1的X
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)             # 有偏差量的y值(偏差量均值为0、标准差为0.01)
    return X, y.reshape((-1, 1))                    # 返回X和有偏差量的y值
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

       注意,`features`中的每一行都包含一个二维数据样本,`labels`中的每一行都包含一维标签值(一个标量)。

print('features:', features[0],'\nlabel:', labels[0])
features: tensor([2.0776e+00, 3.4160e-04]) 
label: tensor([8.3580])

2、读取数据集

       训练模型时要对数据集进行遍历,每次抽取一小批量样本,并使用它们来更新我们的模型。由于这个过程是训练机器学习算法的基础,所以有必要定义一个函数,该函数能打乱数据集中的样本并以小批量方式获取数据。

       在下面的代码中,我们定义一个`data_iter`函数,该函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为`batch_size`的小批量。每个小批量包含一组特征和标签。

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])      # indices是一个列表,这里是把列表索引在区间[i: min(i + batch_size, num_examples)]的元素列表生成tensor
        yield features[batch_indices], labels[batch_indices]    # yield用法:https://blog.csdn.net/mieleizhi0522/article/details/82142856

       通常,我们利用GPU并行运算的优势,处理合理大小的“小批量”。每个样本都可以并行地进行模型计算,且每个样本损失函数的梯度也可以被并行计算。GPU可以在处理几百个样本时,所花费的时间不比处理一个样本时多太多。

       我们直观感受一下小批量运算:读取第一个小批量数据样本并打印。每个批量的特征维度显示批量大小和输入特征数。同样的,批量的标签形状与`batch_size`相等。

batch_size = 10

for X, y in data_iter(batch_size, features, labels):    # 注意下面有个break,循环只进行一轮
    print(X, '\n', y)
    break
tensor([[ 0.1776, -1.4407],
        [ 0.5218,  0.1639],
        [ 1.0650, -0.9711],
        [-0.1460,  1.1675],
        [ 0.7669, -1.7807],
        [ 1.0836, -0.3052],
        [-0.2531,  0.7157],
        [-1.6888,  0.1888],
        [-1.5185,  0.5466],
        [-0.9307,  1.2468]]) 
 tensor([[ 9.4513],
        [ 4.6777],
        [ 9.6400],
        [-0.0656],
        [11.7774],
        [ 7.4136],
        [ 1.2694],
        [ 0.2010],
        [-0.7028],
        [-1.8955]])

       当我们运行迭代时,我们会连续地获得不同的小批量,直至遍历完整个数据集。上面实现的迭代对教学来说很好,但它的执行效率很低,可能会在实际问题上陷入麻烦。例如,它要求我们将所有数据加载到内存中,并执行大量的随机内存访问。在深度学习框架中实现的内置迭代器效率要高得多,它可以处理存储在文件中的数据和数据流提供的数据。

3、定义模型

       接下来,我们必须定义模型,将模型的输入和参数同模型的输出关联起来。回想一下,要计算线性模型的输出,我们只需计算输入特征$\mathbf{X}$和模型权重$\mathbf{w}$的矩阵,向量乘法后加上偏置$b$

       注意,上面的$\mathbf{Xw}$是一个向量,而$b$是一个标量。回想一下torch中描述的广播机制:当我们用一个向量加一个标量时,标量会被加到向量的每个分量上。

def linreg(X, w, b):
    """线性回归模型"""
    return torch.matmul(X, w) + b

4、定义损失函数

       因为需要计算损失函数的梯度,所以我们应该先定义损失函数。这里我们使用平方损失函数。在实现中,我们需要将真实值`y`的形状转换为和预测值`y_hat`的形状相同。

def squared_loss(y_hat, y):
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

5、定义优化算法

       正如我们在前面讨论的,线性回归有解析解。尽管线性回归有解析解,但本书中的其他模型却没有,因此需要使用优化算法,这里我们介绍小批量随机梯度下降。

       在每一步中,使用从数据集中随机抽取的一个小批量,然后根据参数计算损失的梯度。接下来,朝着减少损失的方向更新我们的参数。下面的函数实现小批量随机梯度下降更新。该函数接受模型参数集合、学习速率和批量大小作为输入。每一步更新的大小由学习速率`lr`决定。因为我们计算的损失是一个批量样本的总和,所以我们用批量大小`batch_size`来规范化步长,这样步长大小就不会取决于我们对批量大小的选择。

def sgd(params, lr, batch_size):
    """小批量随机梯度下降"""
    with torch.no_grad():    # 模型参数更新的时候不需要进行梯度计算
        for param in params:
            param -= lr * param.grad / batch_size    # 自动求导,梯度会自动存在于.grad里面
            param.grad.zero_()    # 用完梯度参数后将梯度设0,防止Pytorch在下次计算时累积梯度

6、训练

       现在我们已经准备好了模型训练所有需要的要素,可以实现主要的训练过程部分了。理解这段代码至关重要,因为从事深度学习后,相同的训练过程几乎一遍又一遍地出现。

       在每次迭代中,我们读取一小批量训练样本,并通过我们的模型来获得一组预测(正向传播)。计算完损失后,我们开始反向传播,存储每个参数的梯度(反向传播的作用就是根据正向传播的loss计算梯度)。最后,我们调用优化算法`sgd`来更新模型参数(优化算法的作用就是根据梯度来更新参数值)。

       概括一下,我们将执行以下循环,重复以下训练,直到完成:

                       Ⅰ.计算梯度:$\mathbf{g} \leftarrow \partial_{(\mathbf{w},b)} \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} l(\mathbf{x}^{(i)}, y^{(i)}, \mathbf{w}, b)$

Ⅱ.更新参数:$(\mathbf{w}, b) \leftarrow (\mathbf{w}, b) - \eta \mathbf{g}$

       在每个迭代周期(epoch)中,我们使用`data_iter`函数遍历整个数据集,并将训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。这里的迭代周期个数`num_epochs`和学习率`lr`都是超参数,分别设为3和0.03。设置超参数很棘手,需要通过反复试验进行调整。我们现在忽略这些细节,以后会详细介绍。

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()            # 每一个batch_size计算一次损失,将一个batch的损失求和后反向传播计算梯度,每次循环算一次梯度就行,后面不再需要计算梯度,sgd里面也是有‘with torch.no_grad()’的
        sgd([w, b], lr, batch_size)   # 使用参数的梯度更新参数,梯度用完后清零,防止累积
    with torch.no_grad():    # 关闭梯度运算
        train_l = loss(net(features, w, b), labels)    # 用当前参数计算所有数据的损失
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')
epoch 1, loss 0.039029
epoch 2, loss 0.000140
epoch 3, loss 0.000048

       因为我们使用的是自己合成的数据集,所以我们知道真正的参数是什么。因此,我们可以通过比较真实参数和通过训练学到的参数来评估训练的成功程度。事实上,真实参数和通过训练学到的参数确实非常接近。

print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')
w的估计误差: tensor([ 4.8280e-05, -2.8586e-04], grad_fn=<SubBackward0>)
b的估计误差: tensor([0.0010], grad_fn=<RsubBackward1>)

       注意,我们不应该想当然地认为我们能够完美地求解参数。在机器学习中,我们通常不太关心恢复真正的参数,而更关心如何高度准确预测参数。幸运的是,即使是在复杂的优化问题上,随机梯度下降通常也能找到非常好的解。其中一个原因是,在深度网络中存在许多参数组合能够实现高度精确的预测。

       ------注:本文图片和代码均来自李沐老师的课件,另外加了一些个人注释,感谢李沐老师分享

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/233541.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

js判断是否对象自身为空

文章目录 一、前言二、JSON.stringify三、for in 配合 hasOwnProperty四、Object.keys五、Object.getOwnPropertyNames六、Object.getOwnPropertyNames 结合 Object.getOwnPropertySymbols七、Reflect.ownKeys八、最后 一、前言 如何判断一个对象为空&#xff1f; 先上结论&a…

前端面试——CSS面经(持续更新)

1. CSS选择器及其优先级 !important > 行内样式 > id选择器 > 类/伪类/属性选择器 > 标签/伪元素选择器 > 子/后台选择器 > *通配符 2. 重排和重绘是什么&#xff1f;浏览器的渲染机制是什么&#xff1f; 重排(回流)&#xff1a;当增加或删除dom节点&…

深入理解Dubbo-3.高级功能剖析和原理解析

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码、Kafka原理、分布式技术原理&#x1f525;如果感觉博主的文章还不错的话&#xff…

深入理解JavaScript的箭头函数

深入理解JavaScript的箭头函数 在ES6中&#xff0c;JavaScript引入了箭头函数的概念&#xff0c;它提供了一种更简洁的语法来定义匿名函数。虽然箭头函数看起来很简单&#xff0c;但它们在实际应用中有一些独特的特性和行为。让我们深入理解箭头函数并学习如何正确地使用它们。…

ES6之Map对象

ES6提供了 Map数据结构。它类似于对象&#xff0c;也是键值对的集合。但是“键”的范围不限于字符串&#xff0c;各种类型的值&#xff08;包括对象&#xff09;都可以当作键。 创建方法 let m new Map()console.log(m)Map的方法 1.set( ) 添加元素 接收两个参数&#xff0c…

iMazing 2.17.10官方中文版含2023最新激活许可证码

iMazing是一款iOS设备管理软件&#xff0c;界面简洁功能丰富&#xff0c;但其中还有一个界面更简洁&#xff0c;功能更精炼的小工具&#xff0c;适合轻量级的用户日常来使用&#xff0c;更加方便快捷。接下来&#xff0c;小编就来教大家如何使用iMazing MiNi&#xff0c;以及它…

2-2、基本数据类型

语雀原文链接 文章目录 1、数据类型分类2、基本数据类型2-1、布尔型boolean2-2、字符型char2-3、整型 byte short int long2-4、浮点型float double 3、基本类型转换byte特例char特例 1、数据类型分类 Java 语言是一种强类型语言。通俗点说就是&#xff0c;在 Java 中存储的数…

卡码网 46携带研究材料 LeetCode 416分割等和数组 1049最后一块石头的重量-ii | 代码随想录25期训练营day42、43

动态规划算法4 卡码网 46 携带研究材料 2023.12.6 题目链接常规二维dp数组方法代码随想录讲解[链接]一维滚动数组方法代码随想录讲解[链接] //二维dp数组做法 #include<bits/stdc.h> using namespace std;int main() {//m为材料种类数&#xff0c;n为行李箱最大空间数…

手眼标定 - 最终精度和误差优化心得

手眼标定 - 标定误差优化项 一、TCP标定误差优化1、注意标定针摆放范围2、TCP标定时的点次态与工作姿态尽可能保持相近 二、深度相机对齐矩阵误差1、手动计算对齐矩阵 三、手眼标定拍照姿态1、TCP标定姿态优先2、水平放置棋盘格优先 为减少最终手眼标定的误差&#xff0c;可做或…

首次发布亚马逊云科技生成式AI技术堆栈,re:Invent大会重磅发布

亚马逊云科技总是在不断重构&#xff0c;以推动创新&#xff0c;而今年re:Invent的主角毫无疑问是生成式AI。这从亚马逊云科技副总裁、首席布道师Jeff Barr在re:Invent 2023之前就迫不及待地写了一篇关于PartyRock的体验试玩教程即可窥见一斑。 事实也确实如此。在Las Vegas&am…

什么是HTML?

✨前言✨ 本文主要介绍什么是HTML以及W3C &#x1f352;欢迎点赞 &#x1f44d; 收藏 ⭐留言评论 &#x1f4dd;私信必回哟&#x1f601; &#x1f352;博主将持续更新学习记录收获&#xff0c;友友们有任何问题可以在评论区留言 文章目录 什么是HTMLHTML发展史HTML的特点什么…

编程怎么学才能快速入门,分享一款中文编程工具快速学习编程思路,中文编程工具之分组框构件简介

一、前言&#xff1a; 零基础自学编程&#xff0c;中文编程工具下载&#xff0c;中文编程工具构件之扩展系统菜单构件教程 编程系统化教程链接 https://jywxz.blog.csdn.net/article/details/134073098?spm1001.2014.3001.5502 给大家分享一款中文编程工具&#xff0c;零基础…

Linux权限命令详解

Linux权限命令详解 文章目录 Linux权限命令详解一、什么是权限&#xff1f;二、权限的本质三、Linux中的用户四、linux中文件的权限4.1 文件访问者的分类&#xff08;人&#xff09;4.2 文件类型和访问权限&#xff08;事物属性&#xff09; 五、快速掌握修改权限的做法【第一种…

windows下分卷解压文件

我的文件是这样的&#xff1a; 存放路径为&#xff1a;C:\Users\Luli_study\MICCAI_MMAC\fudanuniversity\DDR dataset 首先要进入分卷文件的目录cd&#xff1a; 第一步&#xff1a;cd /path/o/分卷问文件目录 第二步&#xff1a; 执行之后的结果(红色框出来的)&#xff1a; …

如何掌握构建 LMS 网站的艺术

目录 什么是学习管理系统 (LMS) 在线课程和 LMS 网站的好处 为什么 WordPress 对于 LMS 网站很重要 统一学习中心 多功能性和可扩展性 提高教育参与度 简化管理和监控 节省时间和费用 技能评估和绩效监督 持续学习和技能提升 使用 WordPress 插件构建成功的 LMS 课程 专注于您的…

力扣257. 二叉树的所有路径(递归回溯与迭代)

题目&#xff1a; 给你一个二叉树的根节点 root &#xff0c;按 任意顺序 &#xff0c;返回所有从根节点到叶子节点的路径。 叶子节点 是指没有子节点的节点。 示例 1&#xff1a; 输入&#xff1a;root [1,2,3,null,5] 输出&#xff1a;["1->2->5","…

【小白专用】Sql Server 连接Mysql 更新23.12.09

目标 已知mysql连接参数&#xff08;地址和用户&#xff09;&#xff0c;期望通过Microsoft Sql Server Management Studio &#xff08;以下简称MSSSMS&#xff09;连接Mysql&#xff0c;在MSSSMS中直接查询或修改Mysql中的数据。 一般是选最新的版本下载。 选64位还是32位&a…

java--包装类

1.包装类 ①包装类就是把基本类型的数据包装成对象。 ②自动装箱&#xff1a;基本数据类型可以自动转换为包装类型。 ②自动拆箱&#xff1a;包装类型可以自动转换为基本类型。 2.包装类的其他常见操作 ①可以把基本类型的数据换成字符串类型。 ②可以把字符串类型的数值转…

轻量封装WebGPU渲染系统示例<45>- 材质组装流水线(MaterialPipeline)灯光、阴影、雾(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/material/src/voxgpu/sample/MaterialPipelineFog.ts 当前示例运行效果: 此示例基于此渲染系统实现&#xff0c;当前示例TypeScript源码如下&#xff1a; export class MaterialPipelineFog {pr…

9.MySQL 索引

目录 ​​​​​​​概述 概念&#xff1a; 单列索引 普通索引 创建索引 查看索引 删除索引 唯一索引 创建唯一索引 删除唯一索引 主键索引 组合索引 创建索引 全文索引 概述 使用全文索引 空间索引 内部原理 相关算法&#xff1a; hash算法 二叉树算法 …