智能优化算法应用:基于灰狼算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于灰狼算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于灰狼算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.灰狼算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用灰狼算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.灰狼算法

灰狼算法原理请参考:https://blog.csdn.net/u011835903/article/details/107716390
灰狼算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


灰狼算法参数如下:

%% 设定灰狼优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明灰狼算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/232059.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

class_2:Java概念 java se ee me jdk jre jvm

一、什么是Java? Java是一门面向对象的编程语言,不仅吸收了C语言的各种优点,还摒弃了C里难以理解的多继承、指针等概念,因此Java语言具有功能强大和简单易用两个特征。Java语言作为静态面向对象编程语言的代表,极好地…

常见的消息中间件看这一篇就够了

浅谈消息队列及常见的消息中间件 前言 消息队列 已经逐渐成为企业应用系统 内部通信 的核心手段。它具有 低耦合、可靠投递、广播、流量控制、最终一致性 等一系列功能。 当前使用较多的 消息队列 有 RabbitMQ、RocketMQ、ActiveMQ、Kafka、ZeroMQ、MetaMQ 等,而部…

课堂练习3.4:进程的切换

3-9 课堂练习3.4:进程的切换 进程切换是支持多进程的一个关键环节,涉及到 CPU 现场的保存和恢复,本实训分析 Linux 0.11 的进程切换过程。 第1关第一次进程切换过程分析 任务描述 本关任务回答问题: 在第一次进程切换时: 1.是从几号进程切换到几号进程?0 号进程和 1 号…

【漏洞复现】华脉智联指挥调度平台/xml_edit/fileread.php文件读取漏洞

Nx01 产品简介 深圳市华脉智联科技有限公司,融合通信系统将公网集群系统、专网宽带集群系统、不同制式、不同频段的短波/超短波对讲、模拟/数字集群系统、办公电话系统、广播系统、集群单兵视频、视频监控系统、视频会议系统等融为一体,集成了专业的有线…

如何用Python编写俄罗斯方块Tetris游戏?

在本文中,我们将用Python代码构建一个令人惊叹的项目:俄罗斯方块游戏。在这个项目中,我们将使用pygame库来构建游戏。要创建此项目,请确保您的系统中安装了最新版本的Python。让我们开始吧! Pygame是一组跨平台的Pyth…

银河麒麟本地软件源配置方法

软件源介绍 软件源可以理解为软件仓库,当需要安装软件时则会根据源配置去相应的软件源下载软件包,此方法的优点是可以自动解决软件包的依赖关系。常见的软件源有光盘源、硬盘源、FTP源、HTTP源,本文档主要介绍本地软件源的配置方法&#xff…

通过仿真理解完整的阵列信号噪声模型

概要 噪声对无线电设备的信号接收会造成影响,是通信、雷达、导航、遥感等工程应用领域中的关键考虑因素。通常认为阵列合成能够提升信噪比,但忽略了这一论断的前提,即不同通道引入的噪声互不相关。但实际应用中,接收的噪声不仅仅包含信道引入的不相关噪声,还包含从外界环…

信息化,数字化,智能化三者是同一概念么?

引言 在当今科技和商业领域,信息化、数字化和智能化是三个极为关键的概念。信息化强调信息的获取、传递和应用,数字化则是将物理实体转化为数字形式,而智能化则赋予系统更高级的智能和自主性。这些概念的交汇与融合塑造着我们的现实&#xf…

【STM32】TIM定时器基本定时功能

第一部分:定时器基本定时的功能; 第二部分:定时器的输出比较功能; 第三部分:定时器输入捕获的功能; 第四部分:定时器的编码接口。 1 TIM简介 TIM(Timer)定时器&#…

【LeetCode刷题】数组篇2

🎇数组中等题Part 🌈 开启LeetCode刷题之旅 🌈 文章目录 🎇数组中等题Part🍰229.多数元素II👑思路分析1.哈希表法2.摩尔投票法(进阶) 🍰15.三数之和👑思路分析1.排序双指针 &#x…

PyCharm编辑器结合Black插件,轻松实现Python代码格式化

大家好,使用Black对Python代码进行格式化,可使代码看起来更美观。但是,随着项目规模不断变大,对每个文件运行Black变得很繁琐。本文就来介绍在PyCharm中实现这一目标的方法。 1.安装Black 首先,在虚拟环境中安装Blac…

【学习笔记】lyndon分解

摘抄自quack的ppt。 这部分和 s a sa sa的关联比较大,可以加深对 s a sa sa的理解。 Part 1 如果字符串 s s s的字典序在 s s s以及 s s s的所有后缀中是最小的,则称 s s s是一个 lyndon \text{lyndon} lyndon串。 lyndon \text{lyndon} lyndon分解&a…

了解应用层的HTTP协议与HTTPS协议,在常规请求的应用中Get与Post的区别

一、HTTP协议 1、http协议的特性2、http协议的请求 请求行 GET请求POST 请求(人脸识别方案)两个请求的区别本质区别: (1)url 携带的参数是否可见:(2)参数传递方式(3)缓存性&#xf…

MongoDB中的$type操作符和limit与skip方法

本文主要介绍MongoDB中的$type操作符和limit与skip方法。 目录 MongoDB的$type操作符MongoDB的limit方法MongoDB的skip方法 MongoDB的$type操作符 MongoDB中的$type操作符用于检查一个字段的类型是否与指定的类型相匹配。它可以用于查询和投影操作。 $type操作符可以与以下数…

【SpringBoot】解析Springboot事件机制,事件发布和监听

解析Springboot事件机制,事件发布和监听 一、Spring的事件是什么二、使用步骤2.1 依赖处理2.2 定义事件实体类2.3 定义事件监听类2.4 事件发布 三、异步调用3.1 启用异步调用3.2 监听器方法上添加 Async 注解 一、Spring的事件是什么 Spring的事件监听(…

【五分钟】学会利用cv2.resize()函数实现图像缩放

引言 在numpy知识库:深入理解numpy.resize函数和数组的resize方法中,小编较为详细地探讨了numpy的resize函数背后的机理。从结果来看,numpy.resize函数并不适合对图像进行缩放操作。而opencv中的resize函数虽然和numpy的resize函数同名&…

html实现动漫视频网站模板源码

文章目录 1.视频设计来源1.1 主界面1.2 动漫、电视剧、电影视频界面1.3 播放视频界面1.4 娱乐前线新闻界面1.5 关于我们界面 2.效果和源码2.1 动态效果2.2 源代码 源码下载 作者:xcLeigh 文章地址:https://blog.csdn.net/weixin_43151418/article/detail…

查看网页的cookie

1、打开需要查看的网站,F12 2、点击Network——Doc,选择一项 3、在Request Headers里查找

PyTorch实现逻辑回归

最终效果 先看下最终效果: 这里用一条直线把二维平面上不同的点分开。 生成随机数据 #创建训练数据 x torch.rand(10,1)*10 #shape(10,1) y 2*x (5 torch.randn(10,1))#构建线性回归参数 w torch.randn((1))#随机初始化w,要用到自动梯度求导 b …

【开源】基于Vue和SpringBoot的衣物搭配系统

项目编号: S 016 ,文末获取源码。 \color{red}{项目编号:S016,文末获取源码。} 项目编号:S016,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 衣物档案模块2.2 衣物搭配模块2.3 衣…