如何用Python编写俄罗斯方块Tetris游戏?

在本文中,我们将用Python代码构建一个令人惊叹的项目:俄罗斯方块游戏。在这个项目中,我们将使用pygame库来构建游戏。要创建此项目,请确保您的系统中安装了最新版本的Python。让我们开始吧!

Pygame是一组跨平台的Python模块,用于创建视频游戏。它由设计用于Python编程语言的计算机图形和声音库组成。Pygame适合创建客户端应用程序,这些应用程序可能被封装在独立的可执行文件中。要学习pygame,需要具备Python的基本知识。

要安装pygame,请在终端中执行以下代码:

pip install pygame

我们已经完成了项目的先决条件。让我们来看看这个项目中的一些重要功能。

这种update_graphics方法用于设计游戏界面,并在游戏执行过程中进行必要的更新。该函数设置背景颜色和要显示的文本,并设置边框和宽度。它显示当前分数和时间。它绘制一个小屏幕来显示下一个块。为块设置瓷砖,每行20个瓷砖/平方,即19条水平线,每列10个瓷砖/广场,即9条垂直线。

draw_small_screen方法用于设计在游戏执行期间显示下一个块的相同屏幕界面。它设置背景、边框和文本,并显示下一个块。

manage_events函数用于在游戏执行期间处理块。

Python中俄罗斯方块游戏的完整代码:

我们可以在Pygame的帮助下用Python构建俄罗斯方块游戏,因为它有很多功能。现在,让我们从实现部分开始。在注释的帮助下,您可以逐行理解代码。

现在创建两个python文件,并将它们保存为util.py和tetris.py:

util.py文件:

#Import libraries
import pygame
import sys
import random
import time

# Define important global variables
pygame.init()
clock = pygame.time.Clock()

best_score = 0
longest_time = 0

width = 700
height = 750
DISPLAY_SCREEN = pygame.display.set_mode((width, height))
pygame.display.set_caption(" Tetris")

off_set_x = 10
off_set_y = 80
playing_field_width = 330  #330 / 10 = 33 width per tile
playing_field_height = 660  #600 / 20 = 33 height per tile
tile_length = 33 # tile is a square

#colors
blue = (0, 0, 255)
white = (255, 255, 255) 
black = (0, 0, 0)
gray = (95, 95, 96) 
orange  = (249, 87, 0)  
cobalt_blue = (3, 65, 174)
green_apple  = (114, 203, 59)
cyber_yellow= (255, 213, 0)
beer = (255, 151, 28)
ryb_red = (255, 50, 19)
purple = (128, 0, 128)

# colors of Tetris blocks
block_colors = (cobalt_blue, blue, green_apple, purple, cyber_yellow, beer, ryb_red)
# shapes of Tetris blocks
shapes = ("i_block", "l_block", "j_block", "o_block", "s_block", "t_block", "z_block")
directions = ("vertical_1", "vertical_2", "horizontal_1", "horizontal_2")

background_img = pygame.image.load("resources/images/background_img.jpg")      
instructions_img = pygame.image.load("resources/images/instructions_img.jpg")  
icon_img = pygame.image.load("resources/images/icon.png")
pygame.display.set_icon(icon_img)

class Button:
    def __init__(self, button_color, button_hover_over_color, x, y, width, height, text_size,  text_color, text_hover_over_color = None, text_str=""):
        self.button_color = button_color
        self.button_hover_over_color = button_hover_over_color
        self.x = x
        self.y = y
        self.width = width
        self.height = height
        self.text_size = text_size
        self.text_color = text_color

        if text_hover_over_color:
            self.text_hover_over_color = text_hover_over_color
        else:
            self.text_hover_over_color =  text_color
 
        self.text_str = text_str


    def blit(self, display_screen, outline_color=None):
        if outline_color: 
            pygame.draw.rect(display_screen, outline_color, (self.x-3, self.y-3, self.width+6, self.height+6))
        
        pygame.draw.rect(display_screen, self.button_color, (self.x, self.y, self.width, self.height))

        if self.text_str != "": 
            font = pygame.font.Font("freesansbold.ttf", self.text_size)
            text = font.render(self.text_str, True, self.text_color)
            # to center the text in the middle of the button based on the size of the button
            text_position = (self.x + (self.width/2 - text.get_width()/2), self.y + (self.height/2 - text.get_height()/2))
            display_screen.blit(text, text_position)


    def is_hovered_over(self, mouse_position):
        if self.x < mouse_position[0] < self.x+self.width and self.y < mouse_position[1] < self.y+self.height:
            return True
        return False


    def blit_hovered_over(self, display_screen):
        pygame.draw.rect(display_screen, self.button_hover_over_color, (self.x, self.y, self.width, self.height))

        if self.text_str != "":
            font = pygame.font.Font("freesansbold.ttf", self.text_size)
            text = font.render(self.text_str, True, self.text_hover_over_color)
            # to center the text in the middle of the button based on the size of the button
            text_position = (self.x + (self.width/2 - text.get_width()/2), self.y + (self.height/2 - text.get_height()/2))
            display_screen.blit(text, text_position)


    def is_clicked(self, mouse_position, event):
        if self.is_hovered_over(mouse_position):
            if event.type == pygame.MOUSEBUTTONDOWN and event.button == 1:
                return True
        return False

class Tile:
    def __init__(self, x, y, color = black):
        self.x = x
        self.y = y
        self.color = color
        self.empty = True


    def draw_tile(self):
        pygame.draw.rect(DISPLAY_SCREEN , self.color, (self.x, self.y, tile_length, tile_length) )


class PlayingField():
    def __init__(self):
        #y coordinate of first row = (80) off_set_y 
        self.tiles = {
            "row1":  {80:  []},
            "row2":  {113: []},
            "row3":  {146: []},
            "row4":  {179: []},
            "row5":  {212: []},
            "row6":  {245: []},
            "row7":  {278: []},
            "row8":  {311: []},
            "row9":  {344: []},
            "row10": {377: []},
            "row11": {410: []},
            "row12": {443: []},
            "row13": {476: []},
            "row14": {509: []},
            "row15": {542: []},
            "row16": {575: []},
            "row17": {608: []},
            "row18": {641: []},
            "row19": {674: []},
            "row20": {707: []},
        }
        self.__init_field()


    def __init_field(self):    
        y = off_set_y
        for i in range(20): #rows
            x = off_set_x
            for j in range(10): #cols
                tile_to_add = Tile(x, y) 
                self.tiles["row"+str(i+1)][y].append(tile_to_add)
                x += tile_length
            y += tile_length
    

    def destory_full_row(self, player):
        times = 0
        y = off_set_y        
        for i in range(20):
            for tile in self.tiles["row"+str(i+1)][y]:
                if tile.empty: break

                elif tile.x == off_set_x+playing_field_width-tile_length:
                    times += 1
                    for j in range(800): #just for flashing the row
                        if j%2 == 0:
                            pygame.draw.rect(DISPLAY_SCREEN , black, (self.tiles["row"+str(i+1)][y][0].x+1, self.tiles["row"+str(i+1)][y][0].y+1, playing_field_width-2, tile_length-2) )
                        else:
                            for tile in self.tiles["row"+str(i+1)][y]:
                                pygame.draw.rect(DISPLAY_SCREEN , tile.color, (tile.x, tile.y, tile_length, tile_length) )
                        pygame.draw.line(DISPLAY_SCREEN , white, (off_set_x, y), (playing_field_width+off_set_x-1, y)) # horizontal line
                        pygame.display.update()

                    # let's destory this full row
                    self.destroy_and_replace(i+1, y)
                    player.score += 10*times

            y += tile_length 


    def destroy_and_replace(self, row_number, row_y):
        for i in range (row_number, 1, -1):
            prev_row_number = i-1
            prev_y = row_y-tile_length
            
            self.tiles["row"+str(i)][row_y].clear() #current_row.clear()
            temp_x = off_set_x
            for j in range(10):
                empty_tile = Tile(temp_x, row_y)
                temp_x += tile_length
                self.tiles["row"+str(i)][row_y].append(empty_tile)
            if prev_y < 80: 
                break

            
            for j in range(10):
                old_tile = self.tiles["row"+str(i)][row_y][j]
                new_tile = self.tiles["row"+str(prev_row_number)][prev_y][j] 
                old_tile.x = new_tile.x
                old_tile.color = new_tile.color 
                old_tile.empty = new_tile.empty

            row_y -= tile_length


class Block:
    def __init__(self, shape:str, color = black):
        self.shape = shape
        self.color = color

        self.direction = directions[0] #vertical_1

        #                         tile1                                                        , tile2            , tile3            , tile4
        self.tiles = [ Tile(off_set_x+playing_field_width/2-tile_length, off_set_y, self.color), Tile(0, 0, color), Tile(0, 0, color), Tile(0, 0, color)]
        
        self.__init_shape() 
        for tile in self.tiles:
            tile.empty = False


    def __init_shape(self):
        if self.shape == "i_block":
            self.tiles[1] = Tile(self.tiles[0].x, self.tiles[0].y-tile_length, self.color)
            self.tiles[2] = Tile(self.tiles[0].x, self.tiles[1].y-tile_length, self.color)
            self.tiles[3] = Tile(self.tiles[0].x, self.tiles[2].y-tile_length, self.color)
        elif self.shape == "l_block":
            self.tiles[1] = Tile(self.tiles[0].x+tile_length, self.tiles[0].y, self.color)
            self.tiles[2] = Tile(self.tiles[0].x-tile_length, self.tiles[0].y, self.color)
            self.tiles[3] = Tile(self.tiles[2].x, self.tiles[2].y-tile_length, self.color)
        elif self.shape == "j_block":
            self.tiles[1] = Tile(self.tiles[0].x+tile_length, self.tiles[0].y, self.color)
            self.tiles[2] = Tile(self.tiles[0].x-tile_length, self.tiles[0].y, self.color)
            self.tiles[3] = Tile(self.tiles[1].x, self.tiles[1].y-tile_length, self.color)
        elif self.shape == "o_block":
            self.tiles[1] = Tile(self.tiles[0].x+tile_length,  self.tiles[0].y, self.color)
            self.tiles[2] = Tile(self.tiles[0].x, self.tiles[0].y-tile_length, self.color)
            self.tiles[3] = Tile(self.tiles[1].x, self.tiles[1].y-tile_length, self.color)
        elif self.shape == "s_block":
            self.tiles[1] = Tile(self.tiles[0].x-tile_length, self.tiles[0].y, self.color)
            self.tiles[2] = Tile(self.tiles[0].x, self.tiles[0].y-tile_length, self.color)
            self.tiles[3] = Tile(self.tiles[2].x+tile_length, self.tiles[2].y, self.color)
        elif self.shape == "t_block":
            self.tiles[1] = Tile(self.tiles[0].x+tile_length,  self.tiles[0].y, self.color)
            self.tiles[2] = Tile(self.tiles[0].x-tile_length, self.tiles[0].y, self.color)
            self.tiles[3] = Tile(self.tiles[0].x, self.tiles[0].y-tile_length, self.color)
        elif self.shape == "z_block":
            self.tiles[1] = Tile(self.tiles[0].x+tile_length,  self.tiles[0].y, self.color)
            self.tiles[2] = Tile(self.tiles[0].x, self.tiles[0].y-tile_length, self.color)
            self.tiles[3] = Tile(self.tiles[2].x-tile_length, self.tiles[2].y, self.color)
        else:
            print("Error: wrong block name.")
            pygame.quit()
            sys.exit()

    
    def complete_block(self):
        self.__init_shape()


    def can_fall(self, next_block, playing_field, player):
        from tetris import manage_events, update_graphics
        manage_events(self, next_block, playing_field, player)
        #check borders
        for block_tile in self.tiles:
            if block_tile.y >= playing_field_height+off_set_y-tile_length:
                return False  

        #check already existed tiles
        for block_tile in self.tiles:
            y = off_set_y
            for i in range(20):
                for tile in playing_field.tiles["row"+str(i+1)][y]:
                    if not tile.empty and block_tile.y+tile_length == tile.y and block_tile.x == tile.x: 
                        return False  
                y += tile_length
    
        return True


    def block_is_falling(self, next_block, playing_field, player, faster=None):
        from tetris import manage_events, update_graphics
        manage_events(self,next_block, playing_field, player)

        if self.can_fall(next_block, playing_field, player):
            for tile in self.tiles:
                tile.y += tile_length

            manage_events(self, next_block, playing_field, player)             
            update_graphics(self, next_block, playing_field, player)
            if faster:                
                clock.tick(40)
                self.block_is_falling( next_block, playing_field, player)
            else:                
                clock.tick(5)
            manage_events(self, next_block, playing_field, player)             
            update_graphics(self, next_block, playing_field, player)


    def get_new_block(self, next_block, playing_field, player):
        if self.can_fall(next_block, playing_field, player): return (self, next_block, False)
        
        #if the block has falled completely
        for block_tile in self.tiles: 
            found = False 
            y = off_set_y
            for i in range(20):
                if not found:
                    for j in range(10):
                        if block_tile.x == playing_field.tiles["row"+str(i+1)][y][j].x and block_tile.y == playing_field.tiles["row"+str(i+1)][y][j].y:
                            playing_field.tiles["row"+str(i+1)][y][j].color = block_tile.color
                            playing_field.tiles["row"+str(i+1)][y][j].empty = False
                            found = True
                            break
                    y += tile_length
                else:
                    break
        
        new_block = next_block

        next_rand_index1 = random.randint(0, 6)
        next_rand_index2 = random.randint(0, 6)
        new_next_block = Block(shapes[next_rand_index1], block_colors[next_rand_index2])

        clock.tick(2)
        return (new_block, new_next_block, True)


    def move_left(self, playing_field):
        if self.can_move_left(playing_field):
            for tile in self.tiles:
                tile.x -= tile_length


    def move_right(self, playing_field):
        if self.can_move_right(playing_field):
            for tile in self.tiles:
                tile.x += tile_length


    def can_move_left(self, playing_field):
        # whether inside the playing field or not
        for tile in self.tiles:
            if tile.x <= off_set_x:
                return False
        # whether adjacent field_tiles are occupied or not
        for block_tile in self.tiles:
            y = off_set_y
            for i in range(20):
                for tile in playing_field.tiles["row"+str(i+1)][y]:
                    if not tile.empty and block_tile.x-tile_length == tile.x and block_tile.y  == tile.y:
                        return False  
                y += tile_length
        return True
        

    def can_move_right(self, playing_field):
        # whether inside the playing field or not
        for tile in self.tiles:
            if tile.x + tile_length >= off_set_x+playing_field_width:
                return False
        # whether adjacent field_tiles are occupied or not
        for block_tile in self.tiles:
            y = off_set_y
            for i in range(20):
                for tile in playing_field.tiles["row"+str(i+1)][y]:
                    if not tile.empty and block_tile.x+tile_length == tile.x and block_tile.y  == tile.y:
                        return False  
                y += tile_length
        return True


    def rotate(self, next_block, playing_field, player):
        from tetris import manage_events, update_graphics
        manage_events(self, next_block, playing_field, player)

        if self.shape == "i_block":
            self.rotate_i_block(playing_field)
        elif self.shape == "l_block":
            self.rotate_l_block(playing_field)
        elif self.shape == "j_block":
            self.rotate_j_block(playing_field)
        elif self.shape == "o_block":
            return
            #no rotation for o_block.
        elif self.shape == "s_block":
            self.rotate_s_block(playing_field)
        elif self.shape == "t_block":
            self.rotate_t_block(playing_field)
        elif self.shape == "z_block":
            self.rotate_z_block(playing_field)
        else:
            print("Error: wrong block name.")
            pygame.quit()
            sys.exit()
        manage_events(self, next_block, playing_field, player)
        update_graphics(self, next_block, playing_field, player)


    def rotate_i_block(self, playing_field): #done
        temp_rotated_i = Block("i_block", self.color)
        temp_rotated_i.tiles = self.tiles.copy()
        
        if self.direction == directions[0] or self.direction == directions[1]:
            # ----
            temp_rotated_i.tiles[0] = Tile(temp_rotated_i.tiles[1].x, temp_rotated_i.tiles[0].y, temp_rotated_i.color) 
            temp_rotated_i.tiles[1] = Tile(temp_rotated_i.tiles[0].x-tile_length, temp_rotated_i.tiles[0].y, temp_rotated_i.color)
            temp_rotated_i.tiles[2] = Tile(temp_rotated_i.tiles[0].x+tile_length, temp_rotated_i.tiles[0].y, temp_rotated_i.color)
            temp_rotated_i.tiles[3] = Tile(temp_rotated_i.tiles[2].x+tile_length, temp_rotated_i.tiles[0].y, temp_rotated_i.color)
            temp_rotated_i.direction = directions[2] # "horizontal_1"
        elif self.direction == directions[2] or self.direction == directions[3]:
            # |
            # |
            # |
            # |
            temp_rotated_i.tiles[1] = Tile(temp_rotated_i.tiles[0].x, temp_rotated_i.tiles[0].y-tile_length, temp_rotated_i.color)
            temp_rotated_i.tiles[2] = Tile(temp_rotated_i.tiles[1].x, temp_rotated_i.tiles[1].y-tile_length, temp_rotated_i.color)
            temp_rotated_i.tiles[3] = Tile(temp_rotated_i.tiles[2].x, temp_rotated_i.tiles[2].y-tile_length, temp_rotated_i.color)
            temp_rotated_i.direction = directions[0] #"vertical_1"

        for block_tile in temp_rotated_i.tiles:
            if block_tile.x <= off_set_x or block_tile.x >= playing_field_width:
                return 
            y = off_set_y
            for i in range(20):
                for tile in playing_field.tiles["row"+str(i+1)][y]:
                    if not tile.empty and block_tile.x == tile.x and block_tile.y  == tile.y:
                        return
                y += tile_length

        self.direction = temp_rotated_i.direction
        self.tiles = temp_rotated_i.tiles


    def rotate_l_block(self, playing_field): #done
        temp_rotated_l = Block("l_block", self.color)
        temp_rotated_l.tiles = self.tiles.copy()
        
        if self.direction == directions[0]:
            # after rotating, the block should look like this ↓
            #  _
            # |
            # |
            # |
            temp_rotated_l.tiles[0] = Tile(temp_rotated_l.tiles[0].x, temp_rotated_l.tiles[0].y, temp_rotated_l.color)
            temp_rotated_l.tiles[1] = Tile(temp_rotated_l.tiles[0].x, temp_rotated_l.tiles[0].y-tile_length, temp_rotated_l.color)
            temp_rotated_l.tiles[2] = Tile(temp_rotated_l.tiles[1].x, temp_rotated_l.tiles[1].y-tile_length, temp_rotated_l.color)
            temp_rotated_l.tiles[3] = Tile(temp_rotated_l.tiles[2].x+tile_length, temp_rotated_l.tiles[2].y, temp_rotated_l.color)
            temp_rotated_l.direction = directions[2] # "horizontal_1"
        elif self.direction == directions[2]:
            # after rotating, the block should look like this ↓
            # ---
            #   |
            temp_rotated_l.tiles[0] = Tile(temp_rotated_l.tiles[3].x, temp_rotated_l.tiles[0].y, temp_rotated_l.color)
            temp_rotated_l.tiles[1] = Tile(temp_rotated_l.tiles[0].x, temp_rotated_l.tiles[0].y-tile_length, temp_rotated_l.color)
            temp_rotated_l.tiles[2] = Tile(temp_rotated_l.tiles[1].x-tile_length, temp_rotated_l.tiles[1].y, temp_rotated_l.color)
            temp_rotated_l.tiles[3] = Tile(temp_rotated_l.tiles[2].x-tile_length, temp_rotated_l.tiles[2].y, temp_rotated_l.color)
            temp_rotated_l.direction = directions[1] #"vertical_2"
        elif self.direction == directions[1]: 
            # after rotating, the block should look like this ↓
            #  |
            #  |
            # _|
            temp_rotated_l.tiles[0] = Tile(temp_rotated_l.tiles[3].x, temp_rotated_l.tiles[0].y, temp_rotated_l.color)
            temp_rotated_l.tiles[1] = Tile(temp_rotated_l.tiles[0].x+tile_length, temp_rotated_l.tiles[0].y, temp_rotated_l.color)
            temp_rotated_l.tiles[2] = Tile(temp_rotated_l.tiles[1].x, temp_rotated_l.tiles[1].y-tile_length, temp_rotated_l.color)
            temp_rotated_l.tiles[3] = Tile(temp_rotated_l.tiles[2].x, temp_rotated_l.tiles[2].y-tile_length, temp_rotated_l.color)
            temp_rotated_l.direction = directions[3] #"horizontal_2"
        elif self.direction == directions[3]: 
            # after rotating, the block should look like this ↓
            # |
            # ---
            temp_rotated_l.tiles[0] = Tile(temp_rotated_l.tiles[1].x, temp_rotated_l.tiles[0].y, temp_rotated_l.color)
            temp_rotated_l.tiles[1] = Tile(temp_rotated_l.tiles[0].x+tile_length, temp_rotated_l.tiles[0].y, temp_rotated_l.color)
            temp_rotated_l.tiles[2] = Tile(temp_rotated_l.tiles[0].x-tile_length, temp_rotated_l.tiles[1].y, temp_rotated_l.color)
            temp_rotated_l.tiles[3] = Tile(temp_rotated_l.tiles[2].x, temp_rotated_l.tiles[2].y-tile_length, temp_rotated_l.color) 
            temp_rotated_l.direction = directions[0] #"vertical_1"

        for block_tile in temp_rotated_l.tiles:
            if block_tile.x <= off_set_x or block_tile.x >= playing_field_width:
                return 
            y = off_set_y
            for i in range(20):
                for tile in playing_field.tiles["row"+str(i+1)][y]:
                    if not tile.empty and block_tile.x == tile.x and block_tile.y  == tile.y:
                        return
                y += tile_length

        self.direction = temp_rotated_l.direction
        self.tiles = temp_rotated_l.tiles
        

    def rotate_j_block(self, playing_field): #done
        temp_rotated_j = Block("j_block", self.color)
        temp_rotated_j.tiles = self.tiles.copy()
        
        if self.direction == directions[0]: 
            temp_rotated_j.tiles[0] = Tile(temp_rotated_j.tiles[1].x, temp_rotated_j.tiles[0].y, temp_rotated_j.color)
            temp_rotated_j.tiles[1] = Tile(temp_rotated_j.tiles[0].x-tile_length, temp_rotated_j.tiles[0].y, temp_rotated_j.color)
            temp_rotated_j.tiles[2] = Tile(temp_rotated_j.tiles[1].x, temp_rotated_j.tiles[1].y-tile_length, temp_rotated_j.color)
            temp_rotated_j.tiles[3] = Tile(temp_rotated_j.tiles[2].x, temp_rotated_j.tiles[2].y-tile_length, temp_rotated_j.color)
            temp_rotated_j.direction = directions[2] # "horizontal_1"
        elif self.direction == directions[2]:
            temp_rotated_j.tiles[0] = Tile(temp_rotated_j.tiles[1].x-tile_length, temp_rotated_j.tiles[0].y, temp_rotated_j.color)
            temp_rotated_j.tiles[1] = Tile(temp_rotated_j.tiles[0].x, temp_rotated_j.tiles[0].y-tile_length, temp_rotated_j.color)
            temp_rotated_j.tiles[2] = Tile(temp_rotated_j.tiles[1].x+tile_length, temp_rotated_j.tiles[1].y, temp_rotated_j.color)
            temp_rotated_j.tiles[3] = Tile(temp_rotated_j.tiles[2].x+tile_length, temp_rotated_j.tiles[2].y, temp_rotated_j.color)
            temp_rotated_j.direction = directions[1] #"vertical_2"
        elif self.direction == directions[1]: 
            temp_rotated_j.tiles[0] = Tile(temp_rotated_j.tiles[2].x, temp_rotated_j.tiles[0].y, temp_rotated_j.color)
            temp_rotated_j.tiles[1] = Tile(temp_rotated_j.tiles[0].x, temp_rotated_j.tiles[0].y-tile_length, temp_rotated_j.color)
            temp_rotated_j.tiles[2] = Tile(temp_rotated_j.tiles[1].x, temp_rotated_j.tiles[1].y-tile_length, temp_rotated_j.color)
            temp_rotated_j.tiles[3] = Tile(temp_rotated_j.tiles[2].x-tile_length, temp_rotated_j.tiles[2].y, temp_rotated_j.color)
            temp_rotated_j.direction = directions[3] #"horizontal_2"
        elif self.direction == directions[3]: #back to normal:
            temp_rotated_j.tiles[0] = Tile(temp_rotated_j.tiles[0].x, temp_rotated_j.tiles[0].y, temp_rotated_j.color)
            temp_rotated_j.tiles[1] = Tile(temp_rotated_j.tiles[0].x+tile_length, temp_rotated_j.tiles[0].y, temp_rotated_j.color)
            temp_rotated_j.tiles[2] = Tile(temp_rotated_j.tiles[0].x-tile_length, temp_rotated_j.tiles[0].y, temp_rotated_j.color)
            temp_rotated_j.tiles[3] = Tile(temp_rotated_j.tiles[1].x, temp_rotated_j.tiles[1].y-tile_length, temp_rotated_j.color) 
            temp_rotated_j.direction = directions[0] #"vertical_1"

        for block_tile in temp_rotated_j.tiles:
            if block_tile.x <= off_set_x or block_tile.x >= playing_field_width:
                return 
            y = off_set_y
            for i in range(20):
                for tile in playing_field.tiles["row"+str(i+1)][y]:
                    if not tile.empty and block_tile.x == tile.x and block_tile.y  == tile.y:
                        return 
                y += tile_length

        self.direction = temp_rotated_j.direction
        self.tiles = temp_rotated_j.tiles


    def rotate_s_block(self, playing_field): #done
        temp_rotated_s = Block("s_block", self.color)
        temp_rotated_s.tiles = self.tiles.copy()
        
        if self.direction == directions[0] or self.direction == directions[1]:
            temp_rotated_s.tiles[0] = Tile(temp_rotated_s.tiles[3].x, temp_rotated_s.tiles[0].y, temp_rotated_s.color)
            temp_rotated_s.tiles[1] = Tile(temp_rotated_s.tiles[0].x, temp_rotated_s.tiles[0].y-tile_length, temp_rotated_s.color)
            temp_rotated_s.tiles[2] = Tile(temp_rotated_s.tiles[1].x-tile_length, temp_rotated_s.tiles[1].y, temp_rotated_s.color)
            temp_rotated_s.tiles[3] = Tile(temp_rotated_s.tiles[2].x, temp_rotated_s.tiles[2].y-tile_length, temp_rotated_s.color)
            temp_rotated_s.direction = directions[2] # "horizontal_1"
        elif self.direction == directions[2] or self.direction == directions[3]
            temp_rotated_s.tiles[0] = Tile(temp_rotated_s.tiles[2].x, temp_rotated_s.tiles[0].y, temp_rotated_s.color)
            temp_rotated_s.tiles[1] = Tile(temp_rotated_s.tiles[0].x-tile_length, temp_rotated_s.tiles[0].y, temp_rotated_s.color)
            temp_rotated_s.tiles[2] = Tile(temp_rotated_s.tiles[0].x, temp_rotated_s.tiles[0].y-tile_length, temp_rotated_s.color)
            temp_rotated_s.tiles[3] = Tile(temp_rotated_s.tiles[2].x+tile_length, temp_rotated_s.tiles[2].y, temp_rotated_s.color)
            temp_rotated_s.direction = directions[0] #"vertical_1"

        for block_tile in temp_rotated_s.tiles:
            if block_tile.x <= off_set_x or block_tile.x >= playing_field_width:
                return 
            y = off_set_y
            for i in range(20):
                for tile in playing_field.tiles["row"+str(i+1)][y]:
                    if not tile.empty and block_tile.x == tile.x and block_tile.y  == tile.y:
                        return
                y += tile_length

        self.direction = temp_rotated_s.direction
        self.tiles = temp_rotated_s.tiles   


    def rotate_t_block(self, playing_field): #done
        temp_rotated_t = Block("j_block", self.color)
        temp_rotated_t.tiles = self.tiles.copy()
        
        if self.direction == directions[0]: 
            temp_rotated_t.tiles[0] = Tile(temp_rotated_t.tiles[0].x, temp_rotated_t.tiles[0].y, temp_rotated_t.color)
            temp_rotated_t.tiles[1] = Tile(temp_rotated_t.tiles[0].x, temp_rotated_t.tiles[0].y-tile_length, temp_rotated_t.color)
            temp_rotated_t.tiles[2] = Tile(temp_rotated_t.tiles[1].x, temp_rotated_t.tiles[1].y-tile_length, temp_rotated_t.color)
            temp_rotated_t.tiles[3] = Tile(temp_rotated_t.tiles[1].x+tile_length, temp_rotated_t.tiles[1].y, temp_rotated_t.color)
            temp_rotated_t.direction = directions[2] # "horizontal_1"
        elif self.direction == directions[2]:
            temp_rotated_t.tiles[0] = Tile(temp_rotated_t.tiles[0].x, temp_rotated_t.tiles[0].y, temp_rotated_t.color)
            temp_rotated_t.tiles[1] = Tile(temp_rotated_t.tiles[0].x, temp_rotated_t.tiles[0].y-tile_length, temp_rotated_t.color)
            temp_rotated_t.tiles[2] = Tile(temp_rotated_t.tiles[1].x-tile_length, temp_rotated_t.tiles[1].y, temp_rotated_t.color)
            temp_rotated_t.tiles[3] = Tile(temp_rotated_t.tiles[1].x+tile_length, temp_rotated_t.tiles[2].y, temp_rotated_t.color)
            temp_rotated_t.direction = directions[1] #"vertical_2"
        elif self.direction == directions[1]:
            temp_rotated_t.tiles[0] = Tile(temp_rotated_t.tiles[0].x, temp_rotated_t.tiles[0].y, temp_rotated_t.color)
            temp_rotated_t.tiles[1] = Tile(temp_rotated_t.tiles[0].x, temp_rotated_t.tiles[0].y-tile_length, temp_rotated_t.color)
            temp_rotated_t.tiles[2] = Tile(temp_rotated_t.tiles[1].x, temp_rotated_t.tiles[1].y-tile_length, temp_rotated_t.color)
            temp_rotated_t.tiles[3] = Tile(temp_rotated_t.tiles[1].x-tile_length, temp_rotated_t.tiles[1].y, temp_rotated_t.color)
            temp_rotated_t.direction = directions[3] #"horizontal_2"
        elif self.direction == directions[3]: #back to normal:
            temp_rotated_t.tiles[0] = Tile(temp_rotated_t.tiles[0].x, temp_rotated_t.tiles[0].y, temp_rotated_t.color)
            temp_rotated_t.tiles[1] = Tile(temp_rotated_t.tiles[0].x+tile_length, temp_rotated_t.tiles[0].y, temp_rotated_t.color)
            temp_rotated_t.tiles[2] = Tile(temp_rotated_t.tiles[0].x-tile_length, temp_rotated_t.tiles[0].y, temp_rotated_t.color)
            temp_rotated_t.tiles[3] = Tile(temp_rotated_t.tiles[0].x, temp_rotated_t.tiles[0].y-tile_length, temp_rotated_t.color) 
            temp_rotated_t.direction = directions[0] #"vertical_1"

        for block_tile in temp_rotated_t.tiles:
            if block_tile.x <= off_set_x or block_tile.x >= playing_field_width:
                return 
            y = off_set_y
            for i in range(20):
                for tile in playing_field.tiles["row"+str(i+1)][y]:
                    if not tile.empty and block_tile.x == tile.x and block_tile.y  == tile.y:
                        return
                y += tile_length

        self.direction = temp_rotated_t.direction
        self.tiles = temp_rotated_t.tiles


    def rotate_z_block(self, playing_field): #done
        temp_rotated_z = Block("z_block", self.color)
        temp_rotated_z.tiles = self.tiles.copy()
        
        if self.direction == directions[0] or self.direction == directions[1]:

            temp_rotated_z.tiles[0] = Tile(temp_rotated_z.tiles[3].x, temp_rotated_z.tiles[0].y, temp_rotated_z.color)
            temp_rotated_z.tiles[1] = Tile(temp_rotated_z.tiles[0].x, temp_rotated_z.tiles[0].y-tile_length, temp_rotated_z.color)
            temp_rotated_z.tiles[2] = Tile(temp_rotated_z.tiles[1].x+tile_length, temp_rotated_z.tiles[1].y, temp_rotated_z.color)
            temp_rotated_z.tiles[3] = Tile(temp_rotated_z.tiles[2].x, temp_rotated_z.tiles[2].y-tile_length, temp_rotated_z.color)
            temp_rotated_z.direction = directions[2] # "horizontal_1"
        elif self.direction == directions[2] or self.direction == directions[3]:
            temp_rotated_z.tiles[0] = Tile(temp_rotated_z.tiles[3].x, temp_rotated_z.tiles[0].y, temp_rotated_z.color)
            temp_rotated_z.tiles[1] = Tile(temp_rotated_z.tiles[0].x+tile_length, temp_rotated_z.tiles[0].y, temp_rotated_z.color)
            temp_rotated_z.tiles[2] = Tile(temp_rotated_z.tiles[0].x, temp_rotated_z.tiles[0].y-tile_length, temp_rotated_z.color)
            temp_rotated_z.tiles[3] = Tile(temp_rotated_z.tiles[2].x-tile_length, temp_rotated_z.tiles[2].y, temp_rotated_z.color)
            temp_rotated_z.direction = directions[0] #"vertical_1"

        for block_tile in temp_rotated_z.tiles:
            if block_tile.x <= off_set_x or block_tile.x >= playing_field_width:
                return 
            y = off_set_y
            for i in range(20):
                for tile in playing_field.tiles["row"+str(i+1)][y]:
                    if not tile.empty and block_tile.x == tile.x and block_tile.y  == tile.y:
                        return
                y += tile_length

        self.direction = temp_rotated_z.direction
        self.tiles = temp_rotated_z.tiles      

    def fall_completely(self, next_block, playing_field, player):
        from tetris import update_graphics

        fall= True
        while fall:
            for block_tile in self.tiles:
                if block_tile.y >= playing_field_height+off_set_y-tile_length:
                    fall = False  
                    break 

            #check already existed tiles
            for block_tile in self.tiles:
                y = off_set_y
                for i in range(20):
                    for tile in playing_field.tiles["row"+str(i+1)][y]:
                        if not tile.empty and block_tile.y+tile_length == tile.y and block_tile.x == tile.x: 
                            fall = False   
                            break
                    y += tile_length
            
            if not fall:
                break
            
            for tile in self.tiles:
                tile.y += tile_length
            
            update_graphics(self, next_block, playing_field, player)
            clock.get_rawtime()
            clock.tick(50)
            

class Player:
    def __init__(self, start_time):
        self.start_time = start_time

        self.time_since_start = 0
        self.score = 0 

tetris.py文件:

#import libraries
import pygame
from util import *

def update_graphics(block, next_block, playing_field, player):
    
    #Sets black background and text
    DISPLAY_SCREEN.blit(background_img, (0, 0))
    pygame.draw.rect(DISPLAY_SCREEN , black, (off_set_x, off_set_y, playing_field_width, playing_field_height) )
    font = pygame.font.SysFont("comicsansms", 48)
    rendered_text = font.render("Tetris", 1, orange)
    DISPLAY_SCREEN.blit(rendered_text, (width/2-80, 10))

    #Displays Current score and time
    player.time_since_start = pygame.time.get_ticks() - player.start_time
    font = pygame.font.SysFont("comicsansms", 20)
    rendered_text_time =  font.render("Time: " + str(player.time_since_start), 1, orange)
    DISPLAY_SCREEN.blit(rendered_text_time, (playing_field_width+tile_length*2, playing_field_height-80))  
    rendered_text_score = font.render("Score: " + str(player.score), 1, orange)
    DISPLAY_SCREEN.blit(rendered_text_score, (playing_field_width+tile_length*2, playing_field_height-50))
    
    #Draw the small screen for the next block
    draw_small_screen(next_block)

    #Set tiles
    y = off_set_y
    for i in range(20):
        for tile in playing_field.tiles["row"+str(i+1)][y]:
            tile.draw_tile()
        y += tile_length

    #Blocks while falling
    for tile in block.tiles:
        if tile.y >= off_set_y:
            tile.draw_tile()

    #Sets borders
    pygame.draw.line(DISPLAY_SCREEN , blue, (off_set_x-2, off_set_y-3), (playing_field_width+off_set_x+1, off_set_y-3), 4) # horizontal line top
    pygame.draw.line(DISPLAY_SCREEN , blue, (off_set_x-2, off_set_y+playing_field_height+1), (playing_field_width+off_set_x+1, off_set_y+playing_field_height+1), 4) # horizontal line bottom
    pygame.draw.line(DISPLAY_SCREEN , blue, (off_set_x-3, off_set_y-3), (off_set_x-3, off_set_y+playing_field_height+1), 4) # vertical line left
    pygame.draw.line(DISPLAY_SCREEN , blue, (playing_field_width+off_set_x+1, off_set_y-3), (playing_field_width+off_set_x+1, off_set_y+playing_field_height+1), 4) # vertical line right

    #Sets Grid
    current_y_horizontal_lines = off_set_y
    current_x_vertical_lines = off_set_x
    for i in range(19): 
        current_y_horizontal_lines += 33
        pygame.draw.line(DISPLAY_SCREEN , white, (off_set_x, current_y_horizontal_lines), (playing_field_width+off_set_x-1, current_y_horizontal_lines)) # horizontal line top
    for j in range(9): 
        current_x_vertical_lines += 33        
        pygame.draw.line(DISPLAY_SCREEN , white, (current_x_vertical_lines-1, off_set_y), (current_x_vertical_lines-1, playing_field_height+off_set_y)) # horizontal line top

    pygame.display.update()

def draw_small_screen(next_block):
    
    #Sets background
    pygame.draw.rect(DISPLAY_SCREEN , black, (playing_field_width+tile_length*2, height/2-20, 6*tile_length, 6*tile_length) )
    
    #Sets borders
    pygame.draw.line(DISPLAY_SCREEN , blue, (playing_field_width+tile_length*2-2, height/2-20-2), ((6*tile_length)+(playing_field_width+tile_length*2), (height/2-20-2)), 3) # horizontal line top
    pygame.draw.line(DISPLAY_SCREEN , blue, (playing_field_width+tile_length*2-2, height/2-20+(6*tile_length)), ((6*tile_length)+(playing_field_width+tile_length*2), height/2-20+(6*tile_length)), 3) # horizontal line bottom
    pygame.draw.line(DISPLAY_SCREEN , blue, (playing_field_width+tile_length*2-2, height/2-20-2), (playing_field_width+tile_length*2-2, height/2-20+(6*tile_length)), 3) # vertical line left
    pygame.draw.line(DISPLAY_SCREEN , blue, ((6*tile_length)+(playing_field_width+tile_length*2), height/2-20-2), ((6*tile_length)+(playing_field_width+tile_length*2), height/2-20+(6*tile_length)), 3) # vertical line right
    
    #Sets text
    font = pygame.font.SysFont("comicsansms", 30)
    rendered_text = font.render("Next Block", 1, orange)
    DISPLAY_SCREEN.blit(rendered_text, (playing_field_width+tile_length*2,  height/2-70))
    
    #Displays next block
    temp_block = Block(next_block.shape, next_block.color)  
    temp_block.tiles = [Tile(playing_field_width+tile_length*2+2*tile_length, height/2-20+4*tile_length, next_block.color), Tile(0, 0, next_block.color), Tile(0, 0, next_block.color), Tile(0, 0, next_block.color)]
    temp_block.complete_block()

    for tile in temp_block.tiles:
        tile.draw_tile()

def is_game_over(playing_field, player): 
    y = off_set_y
    for i in range(20):
        for tile in playing_field.tiles["row"+str(i+1)][y]:
            if not tile.empty and tile.y <= off_set_y: 
                temp_y = off_set_y
                for j in range(20):
                    for tile in playing_field.tiles["row"+str(j+1)][temp_y]:
                        tile.draw_tile()
                    temp_y += tile_length

                font = pygame.font.SysFont("comicsansms", 48)
                rendered_text = font.render("GAME OVER", 1, white)
                DISPLAY_SCREEN.blit(rendered_text, (off_set_x+20, playing_field_height/2))
                pygame.display.update()

                time.sleep(2)   
                introduction(player)
        y += tile_length

def start_game():    
    global best_score
    global longest_time

    rand_index = random.randint(0, 6)
    block = Block(shapes[rand_index], block_colors[rand_index])

    next_rand_index = random.randint(0, 6)
    next_block = Block(shapes[next_rand_index], block_colors[next_rand_index]) 

    playing_field = PlayingField()
    start_time = pygame.time.get_ticks()
    player = Player(start_time)

    while True:
        update_graphics(block, next_block, playing_field, player)

        (block, next_block, is_new) = block.get_new_block(next_block, playing_field, player)
        if is_new:
            for event in pygame.event.get():
                if event.type == pygame.QUIT:
                    pygame.quit()
                    sys.exit()
            pygame.event.clear()

        manage_events(block, next_block, playing_field, player)
        update_graphics(block, next_block, playing_field, player)

        block.block_is_falling(next_block, playing_field, player)
        update_graphics(block, next_block, playing_field, player)
        
        playing_field.destory_full_row(player)
        update_graphics(block, next_block, playing_field, player)

        if player.score > best_score:
            best_score = player.score
        if player.time_since_start > longest_time:
            longest_time = player.time_since_start

        is_game_over(playing_field, player)
        update_graphics(block, next_block, playing_field, player)

        pygame.display.update()
        clock.tick(60)


def manage_events(block, next_block, playing_field, player):
    for event in pygame.event.get():
        if event.type == pygame.QUIT:
            pygame.quit()
            sys.exit()
        
        if event.type == pygame.KEYDOWN:
            if event.key == pygame.K_LEFT:
                #move the block to the left
                block.move_left(playing_field)
            elif event.key == pygame.K_RIGHT:
                #move the block to the right
                block.move_right(playing_field)
            elif event.key == pygame.K_UP:
                # rotate block
                block.rotate(next_block, playing_field, player)
            if event.key == pygame.K_SPACE:
                # let the block fall completely
                block.fall_completely(next_block, playing_field, player)
            if event.key == pygame.K_DOWN:
                # let the block fall down faster
                block.block_is_falling(next_block, playing_field, player, "faster")

    update_graphics(block, next_block, playing_field, player)


def introduction(player = None):
    button_width = 300
    button_height = 90
    
    #start_x_button = width/2-button_width/2
    play_button = Button(blue, orange, -400, height/2, button_width, button_height, 32, black, white, "PLAY")
    instructions_button = Button(blue, orange, width+150, height/2+button_height+10, button_width,button_height, 32, black, white, "INSTRUCTIONS")
    quit_button = Button(blue, orange, -400, height/2+button_height*2+20, button_width,button_height, 32, black, white, "QUIT")
    
    font = pygame.font.SysFont("comicsansms", 48)
    rendered_text = font.render("Tetris", 1, black)
    rendered_text_y = height

    #To draw the Tetris text in an animated way
    while rendered_text_y > 10: 
        DISPLAY_SCREEN.blit(background_img, (0, 0))

        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                pygame.quit()
                sys.exit()

        rendered_text_y -= 1.5
        DISPLAY_SCREEN.blit(rendered_text, (width/2-80, rendered_text_y))
        pygame.display.update()

    #To draw the score and time texts in an animated way
    if player:
        font_small = pygame.font.SysFont("comicsansms", 30)
        rendered_current_score = font_small.render("Current Score: " + str(player.score), 1, orange)
        rendered_best_score = font_small.render("Best Score: " + str(best_score), 1, orange)
        rendered_current_time = font_small.render("Current Time: " + str(player.time_since_start), 1, orange)
        rendered_longest_time = font_small.render("Longest Time: " + str(longest_time), 1, orange)

        rendered_current_score_y = height
        rendered_best_score_y = height+40
        rendered_current_time_y = height+80
        rendered_longest_time_y = height+120

        while rendered_current_score_y > 150: 
            DISPLAY_SCREEN.blit(background_img, (0, 0))
            DISPLAY_SCREEN.blit(rendered_text, (width/2-80, rendered_text_y))

            for event in pygame.event.get():
                if event.type == pygame.QUIT:
                    pygame.quit()
                    sys.exit()

            rendered_current_score_y -= 1.5
            rendered_best_score_y -= 1.5
            rendered_current_time_y -= 1.5
            rendered_longest_time_y -= 1.5

            DISPLAY_SCREEN.blit(rendered_current_score, (off_set_x, rendered_current_score_y))
            DISPLAY_SCREEN.blit(rendered_best_score, (off_set_x+45, rendered_best_score_y))
            DISPLAY_SCREEN.blit(rendered_current_time, (off_set_x+15, rendered_current_time_y))
            DISPLAY_SCREEN.blit(rendered_longest_time, (off_set_x+15, rendered_longest_time_y))

            pygame.display.update()

    #To draw the buttons in an animated way
    while play_button.x < width/2-button_width/2 or instructions_button.x > width/2-button_width/2:
        DISPLAY_SCREEN.blit(background_img, (0, 0))
        DISPLAY_SCREEN.blit(rendered_text, (width/2-80, rendered_text_y))
        if player:
            DISPLAY_SCREEN.blit(rendered_current_score, (off_set_x, rendered_current_score_y))
            DISPLAY_SCREEN.blit(rendered_best_score, (off_set_x+45, rendered_best_score_y))
            DISPLAY_SCREEN.blit(rendered_current_time, (off_set_x+15, rendered_current_time_y))
            DISPLAY_SCREEN.blit(rendered_longest_time, (off_set_x+15, rendered_longest_time_y))

        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                pygame.quit()
                sys.exit()
        
        if play_button.x < width/2-button_width/2:
            play_button.x += 3
            quit_button.x += 3
        if instructions_button.x > width/2-button_width/2 :    
            instructions_button.x -= 3

        play_button.blit(DISPLAY_SCREEN)
        instructions_button.blit(DISPLAY_SCREEN)
        quit_button.blit(DISPLAY_SCREEN)
        pygame.display.update()

    run = True
    while run:
        DISPLAY_SCREEN.blit(background_img, (0, 0))
        DISPLAY_SCREEN.blit(rendered_text, (width/2-80, rendered_text_y))
        if player:
            DISPLAY_SCREEN.blit(rendered_current_score, (off_set_x, rendered_current_score_y))
            DISPLAY_SCREEN.blit(rendered_best_score, (off_set_x+45, rendered_best_score_y))
            DISPLAY_SCREEN.blit(rendered_current_time, (off_set_x+15, rendered_current_time_y))
            DISPLAY_SCREEN.blit(rendered_longest_time, (off_set_x+15, rendered_longest_time_y))

        # Get the position of the mouse
        mouse_position = pygame.mouse.get_pos() 
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                pygame.quit()
                sys.exit()
            if event.type == pygame.MOUSEBUTTONDOWN:
                if play_button.is_clicked(mouse_position, event):
                    start_game()
                    run = False
                elif instructions_button.is_clicked(mouse_position, event):
                    instructions(player)
                    run = False
                elif quit_button.is_clicked(mouse_position, event):
                    pygame.quit()
                    sys.exit()
        
        if play_button.is_hovered_over(mouse_position):
            play_button.blit_hovered_over(DISPLAY_SCREEN)
        else:
            play_button.blit(DISPLAY_SCREEN, gray)
        if instructions_button.is_hovered_over(mouse_position):
            instructions_button.blit_hovered_over(DISPLAY_SCREEN)
        else:
            instructions_button.blit(DISPLAY_SCREEN, gray)
        if quit_button.is_hovered_over(mouse_position):
            quit_button.blit_hovered_over(DISPLAY_SCREEN)
        else:
            quit_button.blit(DISPLAY_SCREEN, gray)

        clock.tick(60)
        pygame.display.update()


def instructions(player = None):
    button_width = 150
    button_height = 60

    play_button = Button(blue, orange, width-150-10, height-80, button_width, button_height, 32, black, white, "PLAY >>")
    back_button = Button(blue, orange, 10, height-80, button_width, button_height, 32, black, white, "<< BACK")

    run = True
    while run:
        DISPLAY_SCREEN.blit(instructions_img, (0, 0))
        font = pygame.font.SysFont("comicsansms", 48)
        rendered_text = font.render("Tetris", 1, orange)
        DISPLAY_SCREEN.blit(rendered_text, (width/2-80, 10))

        # Get the position of the mouse
        mouse_position = pygame.mouse.get_pos() 
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                pygame.quit()
                sys.exit()
            if event.type == pygame.MOUSEBUTTONDOWN:
                if play_button.is_clicked(mouse_position, event):
                    start_game()
                    run = False
                elif back_button.is_clicked(mouse_position, event):
                    introduction(player)
                    run = False

        instructions_label = "Instructions" 
        font = pygame.font.SysFont("comicsansms", 40)
        rendered_text = font.render(instructions_label, 1, orange)
        DISPLAY_SCREEN.blit(rendered_text, (width/2 - rendered_text.get_width()/2, 100))
    
         
        instructions1 = "   Move Right:                      right arrow >"  
        instructions2 = "   Move   Left:                     left    arrow <" 
        instructions3 = "          Rotate:                      up      arrow ^" 
        instructions4 = "   Soft  Drop:                      down   arrow" 
        instructions5 = "   Hard  Drop:                      space"

        font = pygame.font.SysFont("comicsansms", 20)
        rendered_text1 = font.render(instructions1, 1, orange)
        rendered_text2 = font.render(instructions2, 1, orange)
        rendered_text3 = font.render(instructions3, 1, orange)
        rendered_text4 = font.render(instructions4, 1, orange)
        rendered_text5 = font.render(instructions5, 1, orange)

        DISPLAY_SCREEN.blit(rendered_text1, (20, 200))
        DISPLAY_SCREEN.blit(rendered_text2, (20, 240))
        DISPLAY_SCREEN.blit(rendered_text3, (20, 280))
        DISPLAY_SCREEN.blit(rendered_text4, (20, 320))
        DISPLAY_SCREEN.blit(rendered_text5, (20, 360))

        if play_button.is_hovered_over(mouse_position):
            play_button.blit_hovered_over(DISPLAY_SCREEN)
        else:
            play_button.blit(DISPLAY_SCREEN, gray)
        if back_button.is_hovered_over(mouse_position):
            back_button.blit_hovered_over(DISPLAY_SCREEN)
        else:
            back_button.blit(DISPLAY_SCREEN, gray)
        
        clock.tick(60)
        pygame.display.update()

if __name__ == "__main__":
    introduction()
    

Python俄罗斯方块Tetris源文件本站下载:
https://download.csdn.net/download/mufenglaoshi/88612722

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/232048.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

银河麒麟本地软件源配置方法

软件源介绍 软件源可以理解为软件仓库&#xff0c;当需要安装软件时则会根据源配置去相应的软件源下载软件包&#xff0c;此方法的优点是可以自动解决软件包的依赖关系。常见的软件源有光盘源、硬盘源、FTP源、HTTP源&#xff0c;本文档主要介绍本地软件源的配置方法&#xff…

通过仿真理解完整的阵列信号噪声模型

概要 噪声对无线电设备的信号接收会造成影响,是通信、雷达、导航、遥感等工程应用领域中的关键考虑因素。通常认为阵列合成能够提升信噪比,但忽略了这一论断的前提,即不同通道引入的噪声互不相关。但实际应用中,接收的噪声不仅仅包含信道引入的不相关噪声,还包含从外界环…

信息化,数字化,智能化三者是同一概念么?

引言 在当今科技和商业领域&#xff0c;信息化、数字化和智能化是三个极为关键的概念。信息化强调信息的获取、传递和应用&#xff0c;数字化则是将物理实体转化为数字形式&#xff0c;而智能化则赋予系统更高级的智能和自主性。这些概念的交汇与融合塑造着我们的现实&#xf…

【STM32】TIM定时器基本定时功能

第一部分&#xff1a;定时器基本定时的功能&#xff1b; 第二部分&#xff1a;定时器的输出比较功能&#xff1b; 第三部分&#xff1a;定时器输入捕获的功能&#xff1b; 第四部分&#xff1a;定时器的编码接口。 1 TIM简介 TIM&#xff08;Timer&#xff09;定时器&#…

【LeetCode刷题】数组篇2

&#x1f387;数组中等题Part &#x1f308; 开启LeetCode刷题之旅 &#x1f308; 文章目录 &#x1f387;数组中等题Part&#x1f370;229.多数元素II&#x1f451;思路分析1.哈希表法2.摩尔投票法(进阶) &#x1f370;15.三数之和&#x1f451;思路分析1.排序双指针 &#x…

PyCharm编辑器结合Black插件,轻松实现Python代码格式化

大家好&#xff0c;使用Black对Python代码进行格式化&#xff0c;可使代码看起来更美观。但是&#xff0c;随着项目规模不断变大&#xff0c;对每个文件运行Black变得很繁琐。本文就来介绍在PyCharm中实现这一目标的方法。 1.安装Black 首先&#xff0c;在虚拟环境中安装Blac…

【学习笔记】lyndon分解

摘抄自quack的ppt。 这部分和 s a sa sa的关联比较大&#xff0c;可以加深对 s a sa sa的理解。 Part 1 如果字符串 s s s的字典序在 s s s以及 s s s的所有后缀中是最小的&#xff0c;则称 s s s是一个 lyndon \text{lyndon} lyndon串。 lyndon \text{lyndon} lyndon分解&a…

了解应用层的HTTP协议与HTTPS协议,在常规请求的应用中Get与Post的区别

一、HTTP协议 1、http协议的特性2、http协议的请求 请求行 GET请求POST 请求(人脸识别方案)两个请求的区别本质区别&#xff1a; &#xff08;1&#xff09;url 携带的参数是否可见&#xff1a;&#xff08;2&#xff09;参数传递方式&#xff08;3&#xff09;缓存性&#xf…

MongoDB中的$type操作符和limit与skip方法

本文主要介绍MongoDB中的$type操作符和limit与skip方法。 目录 MongoDB的$type操作符MongoDB的limit方法MongoDB的skip方法 MongoDB的$type操作符 MongoDB中的$type操作符用于检查一个字段的类型是否与指定的类型相匹配。它可以用于查询和投影操作。 $type操作符可以与以下数…

【SpringBoot】解析Springboot事件机制,事件发布和监听

解析Springboot事件机制&#xff0c;事件发布和监听 一、Spring的事件是什么二、使用步骤2.1 依赖处理2.2 定义事件实体类2.3 定义事件监听类2.4 事件发布 三、异步调用3.1 启用异步调用3.2 监听器方法上添加 Async 注解 一、Spring的事件是什么 Spring的事件监听&#xff08;…

【五分钟】学会利用cv2.resize()函数实现图像缩放

引言 在numpy知识库&#xff1a;深入理解numpy.resize函数和数组的resize方法中&#xff0c;小编较为详细地探讨了numpy的resize函数背后的机理。从结果来看&#xff0c;numpy.resize函数并不适合对图像进行缩放操作。而opencv中的resize函数虽然和numpy的resize函数同名&…

html实现动漫视频网站模板源码

文章目录 1.视频设计来源1.1 主界面1.2 动漫、电视剧、电影视频界面1.3 播放视频界面1.4 娱乐前线新闻界面1.5 关于我们界面 2.效果和源码2.1 动态效果2.2 源代码 源码下载 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43151418/article/detail…

查看网页的cookie

1、打开需要查看的网站&#xff0c;F12 2、点击Network——Doc&#xff0c;选择一项 3、在Request Headers里查找

PyTorch实现逻辑回归

最终效果 先看下最终效果&#xff1a; 这里用一条直线把二维平面上不同的点分开。 生成随机数据 #创建训练数据 x torch.rand(10,1)*10 #shape(10,1) y 2*x (5 torch.randn(10,1))#构建线性回归参数 w torch.randn((1))#随机初始化w&#xff0c;要用到自动梯度求导 b …

【开源】基于Vue和SpringBoot的衣物搭配系统

项目编号&#xff1a; S 016 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S016&#xff0c;文末获取源码。} 项目编号&#xff1a;S016&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 衣物档案模块2.2 衣物搭配模块2.3 衣…

深度模型训练时CPU或GPU的使用model.to(device)

一、使用device控制使用CPU还是GPU device torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 单GPU或者CPU.先判断机器上是否存在GPU&#xff0c;没有则使用CPU训练 model model.to(device) data data.to(device)#或者在确定有GPU的…

python+pytest接口自动化之参数关联

什么是参数关联&#xff1f; 参数关联&#xff0c;也叫接口关联&#xff0c;即接口之间存在参数的联系或依赖。在完成某一功能业务时&#xff0c;有时需要按顺序请求多个接口&#xff0c;此时在某些接口之间可能会存在关联关系。比如&#xff1a;B接口的某个或某些请求参数是通…

TA-Lib学习研究笔记(九)——Pattern Recognition (1)

TA-Lib学习研究笔记&#xff08;九&#xff09;——Pattern Recognition &#xff08;1&#xff09; 0.程序代码 形态识别的函数的应用&#xff0c;通过使用A股实际的数据&#xff0c;验证形态识别函数&#xff0c;用K线显示出现标志的形态走势&#xff0c;由于入口参数基本上…

大学生有担当,乡村振兴新亮点“艺术点亮乡村,创意引领未来”

12月7日上午&#xff0c;由花都区文化馆&#xff08;区非物质文化遗产保护中心&#xff09;指导&#xff0c;广州工商学院主办&#xff0c;广州工商学院国际教育学院承办&#xff0c;花都区文化馆炭步分馆、广州盛美文化传播有限公司协办的广州工商学院国际教育学院视觉传达设计…

C++新经典模板与泛型编程:策略类模板

策略类模板 在前面的博文中&#xff0c;策略类SumPolicy和MinPolicy都是普通的类&#xff0c;其中包含的是一个静态成员函数模板algorithm()&#xff0c;该函数模板包含两个类型模板参数。其实&#xff0c;也可以把SumPolicy和MinPolicy类写成类模板—直接把algorithm()中的两…