好莱坞明星识别

 一、前期工作


1. 设置GPU

from tensorflow       import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
gpus


如果使用的是CPU可以忽略这步



2. 导入数据

data_dir = "./46-data/"

data_dir = pathlib.Path(data_dir)




3. 查看数据

 

image_count = len(list(data_dir.glob('*/*/*.jpg')))

print("图片总数为:",image_count)


 

图片总数为: 578
roses = list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))

YAIRI

output_11_0.png



二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中
●tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。这个函数可以以更方便的方式加载图像数据,用于训练和评估神经网络模型。


测试集与验证集的关系:

1验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
2但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
3因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集

batch_size = 32
img_height = 224
img_width = 224



如果准备尝试 categorical_crossentropy损失函数,下面的代码遇到变动哈,变动细节将在下一周博客内公布。
 

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "./46-data/train/",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

Found 502 files belonging to 2 classes.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "./46-data/test/",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 76 files belonging to 2 classes.




我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
 

class_names = train_ds.class_names
print(class_names)
['adidas', 'nike']



2. 可视化数据

 

plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

output_22_0.png



3. 再次检查数据

 

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(32, 224, 224, 3)
(32,)


●Image_batch是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。
●Label_batch是形状(32,)的张量,这些标签对应32张图片

4. 配置数据集

●shuffle() :打乱数据,关于此函数的详细介绍可以参考:数据集shuffle方法中buffer_size的理解 - 知乎
●prefetch() :预取数据,加速运行

prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:

image.png


使用prefetch()可显著减少空闲时间:

image.png


●cache() :将数据集缓存到内存当中,加速运行

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)



三、构建CNN网络

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入的形状是 (224, 224, 3)即彩色图像。我们需要在声明第一层时将形状赋值给参数input_shape。

网络结构图(可单击放大查看):

image.png

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Dropout(0.3),  
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),  
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(len(class_names))               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
rescaling (Rescaling)        (None, 224, 224, 3)       0         
_________________________________________________________________
conv2d (Conv2D)              (None, 222, 222, 16)      448       
_________________________________________________________________
average_pooling2d (AveragePo (None, 111, 111, 16)      0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 109, 109, 32)      4640      
_________________________________________________________________
average_pooling2d_1 (Average (None, 54, 54, 32)        0         
_________________________________________________________________
dropout (Dropout)            (None, 54, 54, 32)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 52, 52, 64)        18496     
_________________________________________________________________
dropout_1 (Dropout)          (None, 52, 52, 64)        0         
_________________________________________________________________
flatten (Flatten)            (None, 173056)            0         
_________________________________________________________________
dense (Dense)                (None, 128)               22151296  
_________________________________________________________________
dense_1 (Dense)              (None, 2)                 258       
=================================================================
Total params: 22,175,138
Trainable params: 22,175,138
Non-trainable params: 0
_________________________________________________________________




四、训练模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

●损失函数(loss):用于衡量模型在训练期间的准确率。
●优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
●指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

1.设置动态学习率

📮 ExponentialDecay函数:
tf.keras.optimizers.schedules.ExponentialDecay是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。

🔎 主要参数:
●initial_learning_rate(初始学习率):初始学习率大小。
●decay_steps(衰减步数):学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。例如,如果 decay_steps 设置为 10,则每10步衰减一次。
●decay_rate(衰减率):学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。
●staircase(阶梯式衰减):一个布尔值,控制学习率的衰减方式。如果设置为 True,则学习率在每个 decay_steps 步之后直接减小,形成阶梯状下降。如果设置为 False,则学习率将连续衰减。

# 设置初始学习率
initial_learning_rate = 0.1

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, 
        decay_steps=10,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

model.compile(optimizer=optimizer,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])



注:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:

learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)

学习率大与学习率小的优缺点分析:

学习率大

● 优点:
○1、加快学习速率。
○2、有助于跳出局部最优值。
● 缺点:
○1、导致模型训练不收敛。
○2、单单使用大学习率容易导致模型不精确。

学习率小

● 优点:
○1、有助于模型收敛、模型细化。
○2、提高模型精度。
● 缺点:
○1、很难跳出局部最优值。
○2、收敛缓慢。

2.早停与保存最佳模型参数

EarlyStopping()参数说明:

●monitor: 被监测的数据。
●min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
●patience: 没有进步的训练轮数,在这之后训练就会被停止。
●verbose: 详细信息模式。
●mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
●baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
●estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

epochs = 50

# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
                                verbose=1,
                                save_best_only=True,
                                save_weights_only=True)

# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', 
                             min_delta=0.001,
                             patience=20, 
                             verbose=1)



3. 模型训练
 

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer, earlystopper])
Epoch 1/50
16/16 [==============================] - 4s 31ms/step - loss: 3.5439 - accuracy: 0.4721 - val_loss: 0.6931 - val_accuracy: 0.5789

Epoch 00001: val_accuracy improved from -inf to 0.57895, saving model to best_model.h5
Epoch 2/50
16/16 [==============================] - 0s 12ms/step - loss: 0.6929 - accuracy: 0.5279 - val_loss: 0.6891 - val_accuracy: 0.6447

......

Epoch 00040: val_accuracy did not improve from 0.89474
Epoch 41/50
16/16 [==============================] - 0s 12ms/step - loss: 0.0931 - accuracy: 0.9841 - val_loss: 0.3837 - val_accuracy: 0.8816

Epoch 00041: val_accuracy did not improve from 0.89474
Epoch 42/50
16/16 [==============================] - 0s 12ms/step - loss: 0.0871 - accuracy: 0.9801 - val_loss: 0.3834 - val_accuracy: 0.8816

Epoch 00042: val_accuracy did not improve from 0.89474
Epoch 00042: early stopping



五、模型评估

1. Loss与Accuracy图
 

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(len(loss))

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

output_51_0.png


2. 指定图片进行预测
 

from PIL import Image
import numpy as np

# img = Image.open("./45-data/Monkeypox/M06_01_04.jpg")  #这里选择你需要预测的图片
img = Image.open("./46-data/test/nike/1.jpg")  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])

img_array = tf.expand_dims(image, 0) #/255.0  # 记得做归一化处理(与训练集处理方式保持一致)

predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

预测结果为: nike

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/229461.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL数据备份

一、逻辑备份 备份的是建表、建库、插入等操作所执行SQL语句,适用于中小型数据库,效率相对较低。 本质:导出的是SQL语句文件 优点:不论是什么存储引擎,都可以用mysqldump备成SQL语句 缺点:速度较慢&…

周星驰 互联网3.0 团队下个月将上线独立 App

2023年12月7日,新浪科技报道指出,周星驰旗下的互联网3.0团队透露,Moonbox,这家周星驰创立的互联网3.0初创公司,计划在明年1月份完成Moonbox App的上线,届时该应用将免费向用户提供服务。 目前,…

外包干了三年,我承认我确实废了……

没错,我也干过外包,一干就是三年,三年后,我废了…… 虽说废的不是很彻底,但那三年我几乎是出差了三年、玩了三年、荒废了三年,那三年,我的技术能力几乎是零成长的。 说起这段三年的外包经历&a…

git 克隆无权限-重新输入账号密码

克隆项目代码时提示没有权限,有可能是没有登录账号,也可能是账号密码改了,运行下面指令,然后重新克隆项目,下载的时候会让你重新输入账号密码,则克隆成功 git config --global credential.helper cache 参考…

043:vue项目一直出现 sockjs-node/info?t=XX的解决办法

第043个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下,本专栏提供行之有效的源代码示例和信息点介绍,做到灵活运用。 (1)提供vue2的一些基本操作:安装、引用,模板使…

Spark大数据集群日常开发过程遇到的异常及解决思路汇总

原创/朱季谦 在开发Spark任务过程中,遇到过不少新人经常可能会遇到的坑,故而将这些坑都总结了下来,方便日后遇到时,可以快速定位解决,壁面耗费过多时间在查找问题之上。 一、出现java.lang.IllegalAccessError: tried…

AGM CPLD 应用指南

AGM的部分料号跟Altera 硬件Pin to Pin兼容,映射关系表如下: EPM240T100CxN—>AG256SL100(CPLD) EPM240T100IxN---->AG256SL100(CPLD) EPM570T100CxN—>AG576SL100(CPLD) EPM570T100IxN---->AG576SL100(CPLD) EPM570T144CxN—>AG576SL144…

机器人纯阻抗控制接触刚性环境

问题描述 在机器人学中,阻抗控制是一种常用的控制策略,用于管理机器人在与环境交互时的运动和力。阻抗控制背后的关键概念是将环境视为导纳,而将机器人视为阻抗。 纯阻抗控制接触刚性环境时,机器人的行为方式主要受其阻抗参数的…

虚拟化之指令的Trap和仿真

有时,虚拟机监控程序需要在虚拟机(VM)中模拟操作。例如,VM内的软件可能尝试配置与功耗管理或缓存一致性相关的低级处理器控件。通常,您不希望将VM直接访问这些控件,因为它们可能被用于突破隔离,或影响系统中的其他VM。 trap在执行给定操作(例如读取寄存器)时引发异常…

二分查找算法

文章目录 二分查找二分的实战讲解二分查找普通二分模版 在排序数组中查找元素的第一个和最后一个位置万能二分模版 总结 二分查找 什么是二分查找:就是定义左右2个指针(此指针非真指针)取中间值 通过一次次取中间值找到要找到的数 二分的实战讲解 二分查找 题目:地址 题目解析…

实现SQL server数据库完整性

1.创建一个数据库名为“erp” 主数据文件:初始容量为5MB,最大容量为50MB,递增量为1MB,其余参数自设。事务日志文件:初始容量为3MB,最大容量为20MB,递增量为10%,其余参数自设。 创建…

Linux下c开发

编程环境 Linux 下的 C 语言程序设计与在其他环境中的 C 程序设计一样, 主要涉及到编辑器、编译链接器、调试器及项目管理工具。编译流程 编辑器 Linux 中最常用的编辑器有 Vi。编译连接器 编译是指源代码转化生成可执行代码的过程。在 Linux 中,最常用…

WMMSE方法的使用笔记

标题很帅 原论文的描述WMMSE的简单应用 无线蜂窝通信系统的预编码设计问题中,经常提到用WMMSE方法设计多用户和速率最大化的预编码,其中最为关键的一步是将原和速率最大化问题转化为均方误差最小化问题,从而将问题由非凸变为关于三个新变量的…

Vue3实现一个拾色器功能

​ <template><div class"color"><button v-if"hasEyeDrop" click"nativePick">点击取色</button><input v-else type"color" input"nativePick" v-model"selectedColor" /><p&…

【学一点儿前端】真机调试本地公众号网页项目

前言 微信公众号网页开发的真机调试一直是很头疼的事情。 原因一 微信公众号配置的JS安全域名只有三个&#xff0c;一个大中型的公众号这三个JS安全域名都是生产的域名&#xff0c;不可能预留域名用于开发和调试。 原因二 在微信里面只有访问正确的安全域名才能调用wx.config用…

Ubuntu 22.04源码安装yasm 1.3.0

sudo lsb_release -r看到操作系统的版本是22.04&#xff0c;sudo uname -r可以看到内核版本是5.15.0-86-generic&#xff0c;sudo gcc --version可以看到版本是11.2.0&#xff0c;sudo make --version可以看到版本是GNU Make 4.3。 下载yasm http://yasm.tortall.net/Downlo…

《Android编程权威指南》之第二个activity源码及挑战

文章目录 前言效果图依赖MainactivityKotlin的“ &#xff1f;”kotlin的符号 QuizViewModelQuestion类CheatActivityonBackPressed()companion CheatViewModelstring.xml 前言 实现禁止一题多答&#xff0c;按题记录作弊状态、偷看次数限制、横竖屏切换依旧保存状态数据 个人…

GeoPandas初体验:它是什么,我用它展示一下shp矢量数据

GeoPandas 是一个开源的 Python 库&#xff0c;用于处理地理空间数据。它扩展了 Pandas 这个流行的 Python 数据操作库&#xff0c;增加了对地理数据类型和操作的支持。GeoPandas 结合了 Pandas、Matplotlib 和 Shapely 的功能&#xff0c;提供了一个易于使用且高效的工具&…

“我要报名”参观双十二外贸电商节,报名方式都在这!

双十二外贸电商节深圳进出口贸易博览会 2023年12月11-12日 深圳福田会展中心 近1万方展览面积 30000专业观众 跨境选品 外贸采购 行业趋势 人才对接 ▼▼▼▼ 展会时间 2023年12月11日-12日 展会地点 深圳福田会展中心 双十二外贸电商节暨2023深圳进出口贸易博览会选…

【SpringCache】快速入门 通俗易懂

1. 介绍 Spring Cache 是一个框架&#xff0c;实现了基于注解的缓存功能&#xff0c;只需要简单地加一个注解&#xff0c;就能实现缓存功能。 Spring Cache 提供了一层抽象&#xff0c;底层可以切换不同的缓存实现&#xff0c;例如&#xff1a; EHCache Caffeine Redis(常用…