代码随想录算法训练营第45天| 70. 爬楼梯 (进阶) 322. 零钱兑换 279.完全平方数

JAVA代码编写

70. 爬楼梯(进阶版)

卡码网:57. 爬楼梯(第八期模拟笔试)

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

输入描述

输入共一行,包含两个正整数,分别表示n, m

输出描述

输出一个整数,表示爬到楼顶的方法数。

输入示例
3 2
输出示例
3
提示信息
数据范围:
1 <= m < n <= 32;
当 m = 2,n = 3 时,n = 3 这表示一共有三个台阶,m = 2 代表你每次可以爬一个台阶或者两个台阶。
此时你有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶段
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

教程:https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85%E7%89%88%E6%9C%AC.html#%E6%80%9D%E8%B7%AF

方法一:动态规划

思路:和70. 爬楼梯很像,基础的是每次只能走1个或2个台阶,现在改成能走1-m中任意一个台阶。问有多少种方法走完n阶楼梯。

步骤

  1. 定义dp数组:dp[j]: 爬到第j层楼梯,有dp[j]种方法

  2. 递推公式:dp[j] = dp[j - 1] + dp[j - 2] + … +dp[j - m]

    • dp[j - 1],上j-1层楼梯,有dp[j - 1]种方法,那么再1步跳一个台阶不就是dp[j]了么。
    • dp[j - 2],上j-2层楼梯,有dp[j - 2]种方法,那么再2步跳两个台阶不就是dp[j]了么。
    • dp[j - m],上j-m层楼梯,有dp[j - m]种方法,那么再m步跳两个台阶不就是dp[j]了么。
      可以这样理解。因为每次只能走1个楼梯或2个楼梯…或m个楼梯,那么我们要走j个楼梯,可以从第j-m个楼梯,再走m个楼梯;…;也可以从第j-1个楼梯,再走1个楼梯。所以dp[j] = dp[j - 1] + dp[j - 2] + … +dp[j - m]
  3. dp数组初始化:dp[1]=1,dp[2]=2

  4. 确定遍历顺序:遍历n,再遍历m

  5. 举例推导dp数组n=4,m=2

在这里插入图片描述

简单来说,dp[j]等于前m个dp的和,这里的dp[4]=dp[3]+dp[2],刚好是2个的和。

复杂度分析

  • 时间复杂度:O(n * m)
  • 空间复杂度:O(n)
import java.util.Scanner;

class Solution{
    public static void main(String [] args){
        Scanner sc = new Scanner(System.in);
        int m, n;
        while (sc.hasNextInt()) {
            // 从键盘输入参数,中间用空格隔开
            n = sc.nextInt();
            m = sc.nextInt();

            // 求排列问题,先遍历背包再遍历物品
            int[] dp = new int[n + 1];
            dp[0] = 1;
            for (int j = 1; j <= n; j++) {
                for (int i = 1; i <= m; i++) {
                    if (j - i >= 0) dp[j] += dp[j - i];
                }
            }
            System.out.println(dp[n]);
        }
    }
}

322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

提示:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 231 - 1
  • 0 <= amount <= 104

教程:https://programmercarl.com/0322.%E9%9B%B6%E9%92%B1%E5%85%91%E6%8D%A2.html

方法一:动态规划

思路:五步曲

步骤

  1. 定义dp [j]:凑成和为amount的最少硬币个数为dp[j]

  2. 递推公式:

    凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

    所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

    递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

  3. dp数组初始化:dp[0] =0,考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

  4. 确定遍历顺序:

    本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数

    所以本题并不强调集合是组合还是排列。

    如果求组合数就是外层for循环遍历物品,内层for遍历背包

    如果求排列数就是外层for遍历背包,内层for循环遍历物品

  5. 举例推导dp数组,

    以输入:coins = [1, 2, 5], amount = 5为例

在这里插入图片描述

复杂度分析

  • 时间复杂度:O(n * amount),n 为coins长度
  • 空间复杂度:O(amount)
class Solution {
    public int coinChange(int[] coins, int amount) {
        int max = Integer.MAX_VALUE;
        int[] dp = new int[amount + 1];
        //初始化dp数组为最大值
        for (int j = 0; j < dp.length; j++) {
            dp[j] = max;
        }
        //当金额为0时需要的硬币数目为0
        dp[0] = 0;
        for (int i = 0; i < coins.length; i++) {
            //正序遍历:完全背包每个硬币可以选择多次
            for (int j = coins[i]; j <= amount; j++) {
                //只有dp[j-coins[i]]不是初始最大值时,该位才有选择的必要
                if (dp[j - coins[i]] != max) {
                    //选择硬币数目最小的情况
                    dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
                }
            }
        }
        return dp[amount] == max ? -1 : dp[amount];
    }

    public static void main(String[] args) {
        Solution solution = new Solution();
        solution.coinChange(new int[] {1,2,5},5);
    }
}

从贪心的角度看,每次放最大的硬币,一直放,直到amount剩下为amount%最大硬币值,接着放次大或能直接整除的硬币。

class Solution {
    public int coinChange(int[] coins, int amount) {
        if (amount == 0) return 0;
        if (coins.length == 1 && amount % coins[0] != 0) return -1;
        int count = 0;
        Arrays.sort(coins);
        for (int i = coins.length - 1; i >= 0; i--) {
            count += amount / coins[i];
            amount = amount % coins[i];
            if (amount == 0) {
                return count;
            }
        }
        return -1;
    }
}

但是这个代码不能通过,贪心不能通过局部最优获取全局最优。

279. 完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,14916 都是完全平方数,而 311 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9

提示:

  • 1 <= n <= 104

教程:https://programmercarl.com/0279.%E5%AE%8C%E5%85%A8%E5%B9%B3%E6%96%B9%E6%95%B0.html#_279-%E5%AE%8C%E5%85%A8%E5%B9%B3%E6%96%B9%E6%95%B0

方法一:动态规划

思路:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

完全背包

步骤

  1. 定义dp [j]:和为j的完全平方数的最少数量为dp[j]

  2. 递推公式:

    dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。

    此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);

  3. dp数组初始化:dp[0] =0,dp[j]赋最大值

  4. 确定遍历顺序:

    两者都可:

    如果求组合数就是外层for循环遍历物品,内层for遍历背包

    如果求排列数就是外层for遍历背包,内层for循环遍历物品

  5. 举例推导dp数组,

    已输入n为5例,dp状态图如下:

279.完全平方数

复杂度分析

  • 时间复杂度:O(n*sqrt(n))
  • 空间复杂度:O(n)
class Solution {
    // 版本一,先遍历物品, 再遍历背包
    public int numSquares(int n) {
        int max = Integer.MAX_VALUE;
        int[] dp = new int[n + 1];
        //初始化
        for (int j = 0; j <= n; j++) {
            dp[j] = max;
        }
	//如果不想要寫for-loop填充數組的話,也可以用JAVA內建的Arrays.fill()函數。
	//Arrays.fill(dp, Integer.MAX_VALUE);
	
        //当和为0时,组合的个数为0
        dp[0] = 0;
        // 遍历物品
        for (int i = 1; i * i <= n; i++) {
            // 遍历背包
            for (int j = i * i; j <= n; j++) {
                //if (dp[j - i * i] != max) {
                    dp[j] = Math.min(dp[j], dp[j - i * i] + 1);
                //}
		//不需要這個if statement,因爲在完全平方數這一題不會有"湊不成"的狀況發生( 一定可以用"1"來組成任何一個n),故comment掉這個if statement。
            }
        }
        return dp[n];
    }
}

class Solution {
    // 版本二, 先遍历背包, 再遍历物品
    public int numSquares(int n) {
        int max = Integer.MAX_VALUE;
        int[] dp = new int[n + 1];
        // 初始化
        for (int j = 0; j <= n; j++) {
            dp[j] = max;
        }
        // 当和为0时,组合的个数为0
        dp[0] = 0;
        // 遍历背包
        for (int j = 1; j <= n; j++) {
            // 遍历物品
            for (int i = 1; i * i <= j; i++) {
                dp[j] = Math.min(dp[j], dp[j - i * i] + 1);
            }
        }
        return dp[n];
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/228322.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

卷王开启验证码后无法登陆问题解决

问题描述 使用 docker 部署&#xff0c;后台设置开启验证&#xff0c;重启服务器之后&#xff0c;docker重启&#xff0c;再次访问系统&#xff0c;验证码获取失败&#xff0c;导致无法进行验证&#xff0c;也就无法登陆系统。 如果不了解卷王的&#xff0c;可以去官网看下。…

【K8S】微服务不香了?单体化改造悄然兴起!!

微服务一直以来是服务治理的基本盘之一,落地到云原生上,往往是每个 K8s pods 部署一个服务,独立迭代、独立运维。 但是在快速部署的时候,有时候,我们可能需要一些宏服务的优势。有没有一种方法,能够 “既要又要” 呢?本文基于 tRPC-Go 服务,提出并最终实践了一种经验证…

医学图像数据处理流程以及遇到的问题

数据总目录&#xff1a; /home/bavon/datasets/wsi/hsil /home/bavon/datasets/wsi/lsil 1 规整文件命名以及xml拷贝 data_prepare.py 的 align_xml_svs 方法 if __name__ __main__: file_path "/home/bavon/datasets/wsi/lsil"# align_xml_svs(file_path) # b…

程序员的养生指南(生命诚可贵,一人永流传!珍惜生命,从你我做起)

作为程序员&#xff0c;我们经常需要长时间坐在电脑前工作&#xff0c;这对我们的身体健康造成了很大的影响。为了保持健康&#xff0c;我们需要采取一些养生措施来延寿。下面是我个人的一些养生经验和建议&#xff0c;希望能对大家有所帮助。 1、合理安排工作时间&#xff1a;…

Bert-vits2新版本V2.1英文模型本地训练以及中英文混合推理(mix)

中英文混合输出是文本转语音(TTS)项目中很常见的需求场景&#xff0c;尤其在技术文章或者技术视频领域里&#xff0c;其中文文本中一定会夹杂着海量的英文单词&#xff0c;我们当然不希望AI口播只会念中文&#xff0c;Bert-vits2老版本(2.0以下版本)并不支持英文训练和推理&…

多功能智能遥测终端机 5G/4G+北斗多信道 视频采集传输

计讯物联多功能智能遥测终端机&#xff0c;全网通5G/4G无线通信、弱信号地区北斗通信&#xff0c;多信道自动切换保障通信联通&#xff0c;丰富网络接口及行业应用接口&#xff0c;支持水利、环保、工业传感器、控制终端、智能终端接入&#xff0c;模拟量/数字量/信号量采集&am…

一文详解Java反射

文章目录 反射是什么&#xff1f;反射的作用所有方法汇总一、加载Class对象二、加载类的构造器对象三、加载类的成员变量四、加载类的成员方法 反射是什么&#xff1f; 反射就是&#xff1a;加载类&#xff0c;并允许以编程的方式解剖类中的某个成分&#xff08;成员变量&#…

ambari hive on Tez引擎一直卡住

hive on tez使用./bin/hive启动后一直卡住&#xff0c;无法进入命令行 使用TEZ作为Hive默认执行引擎时&#xff0c;需要在调用Hive CLI的时候启动YARN应用&#xff0c;预分配资源&#xff0c;这需要花一些时间&#xff0c;而使用MapReduce作为执行引擎时是在执行语句的时候才会…

微信小程序UI自动化测试实践:Minium+PageObject

小程序架构上分为渲染层和逻辑层&#xff0c;尽管各平台的运行环境十分相似&#xff0c;但是还是有些许的区别&#xff08;如下图&#xff09;&#xff0c;比如说JavaScript 语法和 API 支持不一致&#xff0c;WXSS 渲染表现也有不同&#xff0c;所以不论是手工测试&#xff0c…

Spingboot3详解(全网最详细,新建springboot项目并详解各种组件的用法)

一.Spring Initializr创建向导 1.新建一个空项目 2.在新创建的空项目里&#xff0c;新建Module 3. 选择Spring Initializr 4.选择Spring Boot的版本3以上 5.创建好的一个项目结构 controller包是自己创建的 6.项目结构分析 spingboot主程序 package com.example.boot;impor…

使用hutool工具生成非对称加密公私密钥以及使用案例

1.导入hutool依赖 <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.18</version></dependency>2.直接复制代码 package com.common.utils;import cn.hutool.core.codec.Base64; i…

mac苹果电脑清除数据软件CleanMyMac X4.16

在数字时代&#xff0c;保护个人隐私变得越来越重要。当我们出售个人使用的电脑&#xff0c;亦或者离职后需要上交电脑&#xff0c;都需要对存留在电脑的个人信息做彻底的清除。随着越来越多的人选择使用苹果电脑&#xff0c;很多人想要了解苹果电脑清除数据要怎样做才是最彻底…

优秀软件测试工程师必备的“8个能力”

首先要说&#xff0c;做软件测试不难&#xff0c;难的是做好软件测试。 结合自己这些年的工作经验&#xff0c;自己也总结出来8个方面的能力&#xff0c;可能有些方面感觉要求暂时还达不到&#xff0c;但这些确实是做软件测试工作所必备的能力&#xff0c;掌握了这8个方面的能力…

Python---time库

目录 时间获取 时间格式化 程序计时 time库包含三类函数&#xff1a; 时间获取&#xff1a;time() ctime() gmtime() 时间格式化&#xff1a;strtime() strptime() 程序计时&#xff1a;sleep() perf_counter() 下面逐一介绍&#…

【送书活动四期】被GitHub 要求强制开启 2FA 双重身份验证,我该怎么办?

记得是因为fork了OpenZeppelin/openzeppelin-contracts的项目&#xff0c;之后就被GitHub 要求强制开启 2FA 双重身份验证了&#xff0c;一拖再拖&#xff0c;再过几天帐户操作将受到限制了&#xff0c;只能去搞一下了 目录 2FA是什么为什么要开启 2FA 验证GitHub 欲在整个平台…

Html5响应式全开源网站建站源码系统 附带完整的搭建教程

Html5响应式全开源网站建站源码系统是基于Html5、CSS3和JavaScript等技术开发的全开源网站建站系统。它旨在为初学者和小型企业提供一套快速、简便的网站建设解决方案。该系统采用响应式设计&#xff0c;可以自适应不同设备的屏幕大小&#xff0c;提高用户体验。同时&#xff0…

柏林噪声C++

柏林噪声 随机噪声 如上图所示随机噪声没有任何规律可言&#xff0c;我们希望生成有一些意义的局部连续的随机图案 一维柏林噪声 假设希望生成一段局部连续的随机曲线&#xff0c;可以采用插值的方式&#xff1a;在固定点随机分配y值&#xff08;一般是整数点&#xff09;&a…

LeetCode力扣每日一题(Java):20、有效的括号

一、题目 二、解题思路 1、我的思路 我看到题目之后&#xff0c;想着这可能是力扣里唯一一道我能秒杀的题目了 于是一波操作猛如虎写出了如下代码 public boolean isValid(String s) {char[] c s.toCharArray();for(int i0;i<c.length;i){switch (c[i]){case (:if(c[i]…

Kotlin(十五) 高阶函数详解

高阶函数的定义 高阶函数和Lambda的关系是密不可分的。在之前的文章中&#xff0c;我们熟悉了Lambda编程的基础知识&#xff0c;并且掌握了一些与集合相关的函数式API的用法&#xff0c;如map、filter函数等。另外&#xff0c;我们也了解了Kotlin的标准函数&#xff0c;如run、…

Mybatis XML改查操作(结合上文)

"改"操作 先在UserInfoXMLMapper.xml 中 : <?xml version"1.0" encoding"UTF-8"?> <!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN""http://mybatis.org/dtd/mybatis-3-mapper.dtd"><map…