【论文阅读笔记】M3Care: Learning with Missing Modalities in Multimodal Healthcare Data

本文介绍了一种名为“M³Care”的模型,旨在处理多模态医疗保健数据中的缺失模态问题。这个模型是端到端的,能够补偿病人缺失模态的信息,以执行临床分析。M³Care不是生成原始缺失数据,而是在潜在空间中估计缺失模态的任务相关信息,利用来自具有相似未缺失模态的其他病人的辅助信息。该模型通过任务引导的模态适应性相似性度量来找到相似的病人,并据此进行临床任务。实验表明,M³Care在多种评估指标上超越了现有的基线模型,并且其发现与专家意见和医学知识一致,显示出提供有用见解的潜力。【开放源码】

一.论文概述

  1. 端到端模型设计:M³Care是一个端到端的模型,能够直接处理具有缺失模态的患者数据,补偿这些缺失信息,以执行临床分析。

  2. 任务相关信息的估计:与传统方法不同,M³Care不是直接生成原始缺失数据,而是在潜在空间中估计缺失模态的任务相关信息。这种方法避免了直接处理原始数据的不稳定性和复杂性。

  3. 利用相似患者的辅助信息:M³Care模型通过任务引导的模态适应性相似性度量来识别相似的患者,并利用这些相似患者的未缺失模态数据来估计目标患者的缺失信息。

  4. 临床任务的有效执行:模型能够利用估计出的任务相关信息来有效执行临床任务,如疾病诊断或预后预测。

  5. 实验验证:作者通过在真实世界数据集上的实验,展示了M³Care在各种评估指标上优于现有基线模型的性能,并且其发现与专家意见和医学知识一致,显示出提供有用见解的潜力。

二.模型结构

image-20231207083554870

image-20231207083613696
  • Unimodal Representation Extraction:使用不同的特征抽取模型抽取各自模态特征,图上很清楚,不赘述。

  • Similar Patients Discovery and Information Aggregation:包含如下:

    • task-guided modality-semantic-adaptive similarity metric:使用特殊的核函数方法度量,而不是传统的余弦相似度。

      k ω m (   h i m ,   h j m ) = [ ( 1 − δ m ) k ( ϕ ω m (   h i m ) , ϕ ω m (   h j m ) ) + δ m ] q (   h i m ,   h j m ) k_{\omega_{m}}\left(\mathrm{~h}_{i}^{m}, \mathrm{~h}_{j}^{m}\right)=\left[\left(1-\delta_{m}\right) k\left(\phi_{\omega_{m}}\left(\mathrm{~h}_{i}^{m}\right), \phi_{\omega_{m}}\left(\mathrm{~h}_{j}^{m}\right)\right)+\delta_{m}\right] q\left(\mathrm{~h}_{i}^{m}, \mathrm{~h}_{j}^{m}\right) kωm( him, hjm)=[(1δm)k(ϕωm( him),ϕωm( hjm))+δm]q( him, hjm)

      1. 核函数 k ω m (   h i m ,   h j m ) k_{\omega_{m}}\left(\mathrm{~h}_{i}^{m}, \mathrm{~h}_{j}^{m}\right) kωm( him, hjm):这个函数用于计算两个患者在特定模态 m m m中特征表示的相似度。这里, h i m \mathrm{h}_{i}^{m} him h j m \mathrm{h}_{j}^{m} hjm分别表示第 i i i和第 j j j 个患者在模态 m m m中的特征表示。
      2. 混合项:公式中的第一个部分 ( 1 − δ m ) k ( ϕ ω m (   h i m ) , ϕ ω m (   h j m ) ) \left(1-\delta_{m}\right) k\left(\phi_{\omega_{m}}\left(\mathrm{~h}_{i}^{m}\right), \phi_{\omega_{m}}\left(\mathrm{~h}_{j}^{m}\right)\right) (1δm)k(ϕωm( him),ϕωm( hjm)),其中 ϕ ω m \phi_{\omega_{m}} ϕωm 是一个转换函数,将原始特征空间映射到一个新的空间,以便更好地捕捉相似度。 δ m \delta_{m} δm是一个模态特定的调整参数,它决定了在核函数中保留多少原始特征空间的信息。
      3. 权重项 δ m \delta_{m} δm:这个参数调节着在相似度计算中原始特征空间和转换后空间的相对重要性。它的值在 0 和 1 之间,用于平衡两种不同的相似度计算方式。
      4. 附加项 q (   h i m ,   h j m ) q\left(\mathrm{~h}_{i}^{m}, \mathrm{~h}_{j}^{m}\right) q( him, hjm):这个项用于在相似度计算中添加额外的信息,可能是基于特定模态 m m m 的特定特征或考虑的其他因素
    • 信息聚合:

      Π ~ = ∑ 1 M Π m ⋅ mask ⁡ m ∑ 1 M mask ⁡ m + ϵ Π ~ i , j = { Π ~ i , j  if  Π ~ i , j > Λ 0  if  Π ~ i , j ≤ Λ \begin{array}{c} \tilde{\Pi}=\frac{\sum_{1}^{M} \Pi^{m} \cdot \operatorname{mask}^{m}}{\sum_{1}^{M} \operatorname{mask}^{m}+\epsilon} \\ \tilde{\Pi}_{i, j}=\left\{\begin{array}{cc} \tilde{\Pi}_{i, j} & \text { if } \tilde{\Pi}_{i, j}>\Lambda \\ 0 & \text { if } \tilde{\Pi}_{i, j} \leq \Lambda \end{array}\right. \end{array} Π~=1Mmaskm+ϵ1MΠmmaskmΠ~i,j={Π~i,j0 if Π~i,j>Λ if Π~i,jΛ

      1. Π ~ \tilde{\Pi} Π~:这代表最终聚合后的结果。
      2. ∑ 1 M Π m ⋅ mask ⁡ m \sum_{1}^{M} \Pi^{m} \cdot \operatorname{mask}^{m} 1MΠmmaskm:这里, Π m \Pi^{m} Πm 表示第 m m m 个模态的某种计算结果或特征表示,而 mask ⁡ m \operatorname{mask}^{m} maskm 是一个掩码(mask),用于指示第 m m m个模态是否可用或重要。掩码通常是二进制的(0或1),用于选择性地考虑(或忽略)特定模态。
      3. ∑ 1 M mask ⁡ m + ϵ \sum_{1}^{M} \operatorname{mask}^{m}+\epsilon 1Mmaskm+ϵ:分母是对所有模态的掩码求和,再加上一个小常数 ϵ \epsilon ϵ(通常接近0)以避免除以零的情况。这种求和确保了当某些模态缺失时,计算结果仍然是有意义的。
      4. Π ~ i , j \tilde{\Pi}_{i, j} Π~i,j:这是聚合后的结果矩阵中的一个元素,代表第 i个样本和第 j j j个样本之间的某种度量。
      5. 条件语句:这里的条件语句用于应用一个阈值 Λ \Lambda Λ。如果 Π ~ i , j \tilde{\Pi}_{i, j} Π~i,j的值大于阈值 Λ \Lambda Λ,它将被保留;如果小于或等于 Λ \Lambda Λ,则将该值设置为0。这种方法用于过滤掉那些低于特定重要性水平的元素。

​ 总体来说,这个公式描述了一个两步过程:首先是结合多个模态的信息,然后通过应用阈值来过滤和精细化结果。目标是通过合并来自相似患者的辅助信息来推断模态缺失样本。因此,为了聚合来自相似的信息,将一批患者的表示表示为每个模态中的一个图,相似度矩阵 Π ~ \tilde{\Pi} Π~作为图的邻接矩阵(即,然后使用图卷积层(GCN),利用结构信息增强表示学习。

  • Adaptive Modality Imputation:
  • Multimodal Interaction Capture:这部分没有什么好说,就是常规Transformer融合多模态特征。

三.数据集

Ocular Disease Intelligent Recognition (ODIR) Dataset and Ophthalmic Vitrectomy
(OV) Dataset 眼病智能识别(ODIR)数据集和眼科玻璃体切除术(OV)数据集

四 .实验结果

image-20231207093107412 image-20231207093320606

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/226990.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【web安全】文件包含漏洞详细整理

前言 菜某的笔记总结,如有错误请指正。 本文用的是PHP语言作为案例 文件包含漏洞的概念 开发者使用include()等函数,可以把别的文件中的代码引入当前文件中执行,而又没有对用户输入的内容进行充分的过滤&#xff0…

算法通关村第十八关-青铜挑战回溯是怎么回事

大家好我是苏麟 , 今天聊聊回溯是怎么个事 . 回溯是最重要的算法思想之一,主要解决一些暴力枚举也搞不定的问题,例如组合、分割、子集、排列,棋盘等。从性能角度来看回溯算法的效率并不高,但对于这些暴力都搞不定的算法能出结果就…

区分node,npm,nvm

目录 一,nodejs二,npm三,nvm 区分node,npm,nvm 几年前学习前端的时候学习的就是htmlcssjs 三件套。 现在只学习这些已经不能满足需要了。 一,nodejs nodejs是编程语言javascript运行时环境。(比…

【复杂gRPC之Java调用go】

1 注意点 一般上来说如果java调用java的话,我们可以使用springcloud来做,而面对这种跨语言的情况下,gRPC就展现出了他的优势。 代码放在这了,请结合前面的go服务器端一起使用 https://gitee.com/guo-zonghao/java-client-grpc /…

阿里云实时数据仓库HologresFlink

1. 实时数仓Hologres特点 专注实时场景:数据实时写入、实时更新,写入即可见,与Flink原生集成,支持高吞吐、低延时、有模型的实时数仓开发,满足业务洞察实时性需求。亚秒级交互式分析:支持海量数据亚秒级交…

量子算力引领未来!玻色量子出席第二届CCF量子计算大会

​8月19日至20日,中国计算机学会(CCF)主办的第二届CCF量子计算大会暨中国量子计算峰会(CQCC 2023)在中国合肥成功举办。本届大会以“量超融合,大国算力”为主题,设有量子计算软件、硬件、应用生…

机器学习应用 | 使用 MATLAB 进行异常检测(上)

异常检测任务,指的是检测偏离期望行为的事件或模式,可以是简单地检测数值型数据中,是否存在远超出正常取值范围的离群值,也可以是借助相对复杂的机器学习算法识别数据中隐藏的异常模式。 在不同行业中,异常检测的典型…

智能优化算法应用:基于材料生成算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于材料生成算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于材料生成算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.材料生成算法4.实验参数设定5.算法结果6.参考…

Tomcat头上有个叉叉

问题原因: 这是因为它就是个空的tomcat,并没有导入项目运行 解决方案: war模式:发布模式,正式发布时用,将WEB工程以war包的形式上传到服务器 war exploded模式:开发时用,将WEB工程的文件夹直接…

Navicat 连接 GaussDB分布式的快速入门

Navicat Premium(16.3.3 Windows版或以上)正式支持 GaussDB 分布式数据库。GaussDB分布式模式更适合对系统可用性和数据处理能力要求较高的场景。Navicat 工具不仅提供可视化数据查看和编辑功能,还提供强大的高阶功能(如模型、结构…

【2023年网络安全优秀创新成果大赛专刊】医疗机构临床数据合规共享解决方案(美创科技)

“2023年网络安全优秀创新成果大赛”由中央网信办网络安全协调局指导,中国网络安全产业联盟(CCIA)主办。本次大赛由3场分站赛、3场专题赛、1场大学生创新创业作品赛组成。 在杭州分站赛,美创科技—“医疗机构临床合规共享解决方案…

redis-学习笔记(list)

因为 list 可以头插头删, 尾插尾删, 所以其实更像 C 中的 deque (双端队列) ---- 知道就好, 别乱说, 具体底层编码是啥, 俺也不知道(没注意过) 可以通过组合, 把 list 当作队列 / 栈来用 list 的几种底层编码: ziplist(压缩列表) , linkedlist(链表) , quicklist ziplist 就是将…

docker镜像仓库hub.docker.com无法访问

docker镜像仓库hub.docker.com无法访问 文章主要内容: 介绍dockerhub为什么无法访问解决办法 1 介绍dockerhub为什么无法访问 最近许多群友都询问为什么无法访问Docker镜像仓库,于是我也尝试去访问,结果果然无法访问。 大家的第一反应就是…

如何优雅使用 vue-html2pdf 插件生成pdf报表

使用 vue-html2pdf 插件 业务背景,老板想要一份能征服客户的pdf报表,传统的pdf要手撕,企业中确实有点耗费时间,于是github上面看到开源的这个插件就…废话不多说,直接上教程 1.使用下面命令安装 vue-html2pdf npm i…

PHPstudy小皮的数据库打开失败问题解决

如果你的MYSQL服务启动后停止,多次重启依然无法解决的情况下,大概率是和本地mysql冲突了 但是,千万不要卸载掉本地mysql,只需要在服务中停止本地mysql即可 将此服务关闭,小皮的mysql即可使用

AtCoder ABC周赛2023 11/4 (Sat) D题题解

目录 原题截图: 题目大意: 主要思路: 注意事项(很多人再这个地方掉坑): 代码: 原题截图: 题目大意: 给你两个数组(A和B)长度都为n,然你求出一…

从零开发短视频电商 在AWS SageMaker已创建的模型列表中进行部署

1.导航到 SageMaker 控制台。 2.在 SageMaker 控制台的左侧导航栏中,选择 “模型” 选项。 3.在模型列表中,找到您要部署的模型。选择该模型。 4.点击 “创建端点” 选项或者点击 “创建端点配置” 选项都可以进行部署。 选择创建端点进去后还是会进行…

Axure原型组件库,数据可视化动态元件库(超详细Axure9可视化素材)

专门针对Axure制作的动态图表元件库,帮助产品经理更高效地制作高保真图表原型,是产品经理必备元件工具。现分享完整的组件库,大家一起学习。 每一个动态组件在原型文件中都配有详细介绍,文末可下载完整原型组件包~ 1. 本组件库的…

Appium获取toast方法封装

一、前置说明 toast消失的很快,并且通过uiautomatorviewer也不能获取到它的定位信息,如下图: 二、操作步骤 toast的class name值为android.widget.Toast,虽然toast消失的很快,但是它终究是在Dom结构中出现过&…

如何在Spring Boot中集成RabbitMQ

如何在Spring Boot中集成RabbitMQ 在现代微服务架构中,消息队列(如RabbitMQ)扮演了关键的角色,它不仅能够提供高效的消息传递机制,还能解耦服务间的通信。本文将介绍如何在Spring Boot项目中集成RabbitMQ,…