智能优化算法应用:基于蜜獾算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蜜獾算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于蜜獾算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.蜜獾算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用蜜獾算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.蜜獾算法

蜜獾算法原理请参考:https://blog.csdn.net/u011835903/article/details/122236413
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

蜜獾算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明蜜獾算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/224722.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入理解 new 操作符:创建对象的秘密武器(下)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

SQL Server 数据库,创建触发器避免数据被更改

5.4触发器 触发器是一种特殊类型的存储过程,当表中的数据发生更新时将自动调用,以响应INSERT、 UPDATE 或DELETE 语句。 5.4.1什么是触发器 1.触发器的概念 触发器是在对表进行插入、更新或删除操作时自动执行的存储过程,触发器通常用于强…

Elastcsearch:通过 Serverless 提供更多服务

作者:Ken Exner 人们使用 Elasticsearch 解决最大数据挑战的方式一直令我们感到惊讶。 从超过 40 亿次下载、70,000 次提交、1,800 名贡献者以及我们全球社区的反馈中可以清楚地看出这一点。 Elastic 在广泛的用例中发挥的作用促使我们简化复杂性,让搜索…

9.基于SpringBoot3+I18N实现国际化

1. 新建资源文件 在resources目录下新建目录i18n, 然后 新建messages_en.properties文件 user.login.erroraccount or password error!新建messages_zh_CN.properties文件 user.login.error帐户或密码错误!2. 新建LocaleConfig.java文件 Configurati…

gpt3、gpt2与gpt1区别

参考:深度学习:GPT1、GPT2、GPT-3_HanZee的博客-CSDN博客 Zero-shot Learning / One-shot Learning-CSDN博客 Zero-shot(零次学习)简介-CSDN博客 GPT-2 模型由多层单向transformer的解码器部分构成,本质上是自回归模型…

Hazelcast分布式内存网格(IMDG)基本使用,使用Hazelcast做分布式内存缓存

文章目录 一、Hazelcast简介1、Hazelcast概述2、Hazelcast之IMDG3、数据分区 二、Hazelcast配置1、maven坐标2、集群搭建(1)组播自动搭建 3、客户端4、集群分组5、其他配置 三、Hazelcast分布式数据结构1、IMap2、IQueue:队列3、MultiMap4、I…

MySQL和MongoDB简介以及它们之间的区别

本文主要介绍MySQL和MongoDB的简介以及它们之间的区别。 目录 MySQL简介MySQL的优缺点MySQL的应用场景MongoDB简介MongoDB的优缺点MongoDB的应用场景MySQL和MongoDB的区别 MySQL简介 MySQL是一种开源的关系型数据库管理系统,是世界上最流行的数据库之一。它支持多用…

基于Java SSM框架实现弹幕视频网站系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架实现弹幕视频网站系统演示 摘要 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,弹幕视频网站当然也不能排除在外。弹幕视频网站是以实际运用为开发背景&…

语义分割网络FCN

语义分割是一种像素级的分类,输出是与输入图像大小相同的分割图,输出图像的每个像素对应输入图像每个像素的类别,每一个像素点的灰度值都是代表当前像素点属于该类的概率。 语义分割任务需要解决的是如何把定位和分类这两个问题一起解决&…

强敌环伺:金融业信息安全威胁分析——钓鱼和恶意软件

门口的敌人:分析对金融服务的攻击 Akamai会定期针对不同行业发布互联网状态报告(SOTI),介绍相关领域最新的安全趋势和见解。最新的第8卷第3期报告主要以金融服务业为主,分析了该行业所面临的威胁和Akamai的见解。我们发…

SLAM算法与工程实践——SLAM基本库的安装与使用(1):Eigen库

SLAM算法与工程实践系列文章 下面是SLAM算法与工程实践系列文章的总链接,本人发表这个系列的文章链接均收录于此 SLAM算法与工程实践系列文章链接 下面是专栏地址: SLAM算法与工程实践系列专栏 文章目录 SLAM算法与工程实践系列文章SLAM算法与工程实践…

外包干了一个月,技术明显进步。。。。。

先说一下自己的情况,本科生生,19年通过校招进入南京某软件公司,干了接近3年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了3年的功能测试…

springcloud多环境部署打包 - maven 篇

背景 在使用 springboot 和sringcloudnacos开发项目过程中,会有多种环境切换,例如开发环境,测试环境,演示环境,生产环境等,我们通过建立多个 yml 文件结合 profiles.active 属性进行环境指定,但…

面试常问的dubbo的spi机制到底是什么?(下)

前文回顾 前一篇文章主要是讲了什么是spi机制,spi机制在java、spring中的不同实现的分析,同时也剖析了一下dubbo spi机制的实现ExtensionLoader的实现中关于实现类加载以及实现类分类的源码。 一、实现类对象构造 看实现类对象构造过程之前,先…

当使用RSA加密,从手机前端到服务器后端的请求数据存在+

将转成了空格,导致解密出错 将空格转成了

MySQL系列(二)——日志篇

一、有哪些日志 MySQL应该是我们用的最多,也算是最熟悉的数据库了。那么,MySQL中有哪些日志了,或者你知道的有哪些日志了? 首先,我们能接触到的,一般我们排查慢查询时,会去看慢查询日志。如果…

红队专题-开源资产扫描系统-ARL资产灯塔系统

ARL资产灯塔系统 安装说明问题 : 安装说明 源码地址 https://github.com/TophantTechnology/ARL https://github.com/TophantTechnology/ARL/wiki/Docker-%E7%8E%AF%E5%A2%83%E5%AE%89%E8%A3%85-ARL 安装环境 uname -a Linux VM-24-12-centos 3.10.0-1160.49.1.e…

Git多人协作(二)

个人主页:Lei宝啊 愿所有美好如期而遇 前言 上节:Git多人协作(一) 上次我们模拟了多人在一个分支上进行开发,并且是在远程直接新建的分支,而后我们本地进行拉取;本节我们将模拟多人分别在多分支上进行开发&#xf…

Azure Machine Learning - Azure OpenAI 服务使用 GPT-35-Turbo and GPT-4

通过 Azure OpenAI 服务使用 GPT-35-Turbo and GPT-4 环境准备 Azure 订阅 - 免费创建订阅已在所需的 Azure 订阅中授予对 Azure OpenAI 服务的访问权限。 目前,仅应用程序授予对此服务的访问权限。 可以填写 https://aka.ms/oai/access 处的表单来申请对 Azure Op…

网络基础入门---使用udp协议改进程序

目录标题 前言改进一:单词翻译程序准备工作transform函数的实现init_dictionary函数的实现transform函数的实现其他地方的修改测试 改进二:远程指令执行程序popenexecCommand函数实现测试 改进三:群聊程序Usr类onlineUser类adduserdelUserisO…