Elastcsearch:通过 Serverless 提供更多服务

作者:Ken Exner

人们使用 Elasticsearch® 解决最大数据挑战的方式一直令我们感到惊讶。 从超过 40 亿次下载、70,000 次提交、1,800 名贡献者以及我们全球社区的反馈中可以清楚地看出这一点。 Elastic® 在广泛的用例中发挥的作用促使我们简化复杂性,让搜索变得更容易,并充分利用我们所有的解决方案。 这就是为什么我们很高兴能够通过新的无服务器 (serverless) 架构扩展 Elasticsearch 的可能性。 它简化了运营职责,将 Elasticsearch 著名的高速性能扩展到可扩展的对象存储,并通过专门构建的搜索、可观察性和安全性产品体验简化了工作流程。 这是将 Elastic 与我们现有的本地部署和 Elastic Cloud 部署一起使用的新方式。

只需携带你的数据,其余的均由 serverless 完成

当我们思考下一个十年时,我们认识到需要更简单的用户体验,同时仍能提供闪电般的性能。 我们知道许多 Elastic 用户希望完全控制部署和扩展,但其他用户则希望更加简单。 SOC 分析师希望保护他们的组织,而不是通过扩展分片来更好地检测威胁。 开发人员希望构建搜索应用程序,而不是调整基础设施以实现更快的查询。 SRE 希望确保在线可靠性,而不是通过设置配置来帮助最大限度地减少停机时间。 我们可能喜欢管理集群,但你不必这样做! Elastic 的 serverless 架构消除了运营责任,因此你可以告别管理集群、配置分片、扩展和设置 ILM。 只需携带你的数据和查询,平台就会处理所有扩展和管理。

厌倦了听到这样的说法:你无法通过更长的数据保留期实现更快的可扩展性,同时仍能平衡成本并降低复杂性? 好吧,现在你可以了。 对于许多工作负载来说,规模和速度都很重要 —— 无论是调查 SolarWinds 等驻留时间较长的威胁,确定数百个服务中断的根本原因,还是使用向量搜索通过检索增强生成来为生成型 AI 工作负载提供动力。

这就是为什么我们的 serverless 架构基于重新设计和重新构想的 Elasticsearch,它完全将计算与存储解耦并依赖于对象存储。 云对象存储提供了经济高效的可扩展性,但会带来延迟,需要新技术来提高速度。 值得庆幸的是,我们在优化 Elasticsearch 和 Lucene 索引数据结构以实现高效缓存方面拥有多年的经验,再加上增强的查询时间并行化,克服了这一延迟挑战。 这意味着你可以通过内置控件享受速度和规模,轻松平衡速度和成本。

面向未来的新 Elastic 架构

Elastic 的新 serverless 架构标志着 Elasticsearch 的重大重新设计。 它旨在利用最新的云原生服务,并通过无忧管理提供优化的产品体验。 它提供数据湖的存储容量,但具有与 Elasticsearch 相同的快速搜索性能,以及无需干预的集群管理和扩展的操作简单性。 该架构基于四个关键原则:

  • 计算和存储解耦
  • 单独的搜索层和索引层
  • 作为记录系统的廉价对象存储
  • 低延迟查询

存储与计算完全解耦

为了简化集群拓扑,计算和存储现在完全解耦。 Elasticsearch 目前提供各种数据层(热、温、冷和冻结),以更好地使数据与硬件要求保持一致。 在无服务器架构中,存储和计算的解耦使得数据分层变得过时,从而使操作更加简单。 例如,serverless 将热层和冻结层合并在一起:冻结层索引可以存储大量搜索频率较低的数据,但与热层类似,这些数据可以随时更新和快速查询。

此外,还有简单的控制来平衡搜索性能和存储成本效率。 这支持快速可靠地独立扩展任何工作负载,而不会影响性能。

单独的索引和搜索层

Elastic 的无服务器架构不依赖主实例和副本实例来管理多个工作负载,而是支持不同的索引和搜索层。 这种分离意味着可以独立扩展工作负载,并且可以针对每个用例选择和优化硬件。

此外,这种方法还有效解决了搜索和索引工作负载相互干扰这一长期存在的问题。 这使得优化任何搜索用例或工作负载的性能和支出变得更加容易。 此属性对于希望防止大量搜索中断索引操作的大容量日志记录和安全用户,以及希望使用大量索引时间功能以获得更好的相关性和搜索性能而不影响其搜索性能的搜索用户非常重要。

经济实惠的对象存储

Serverless 架构依靠廉价的对象存储来实现更大的规模,同时降低存储成本。 通过利用对象存储来实现持久性,Elasticsearch 不再需要将索引操作复制到一个或多个副本来实现持久性,从而减少索引成本和数据重复。 相反,段通过对象存储进行持久化和复制。 这可以提高满足各种要求的效率。 例如,它通过最大限度地减少本地磁盘上存储的数据来降低索引层的存储费用。 Serverless 架构直接索引到对象存储,因此只有一小部分保留为本地数据。 对于仅追加操作的场景,只需要保留特定的元数据来建立索引,从而大大减少索引所需的本地存储空间。

大规模低延迟查询

对象存储可以支持大量数据,但不以速度或低延迟而闻名。 那么 Elastic 如何使用对象存储并保持良好的查询性能呢? 好吧,我们引入了一些新功能来提供快速的性能。 段级查询并行化可减少从对象存储检索数据时的延迟。 当数据不在本地缓存中时,这使得更多请求能够快速推送到 S3 等对象存储。 通过可重用性和利用每种数据类型的最佳 Lucene 索引格式,缓存也变得 “更加智能”。 这些只是一些新颖的功能,这些功能可以显着提高对象存储和缓存层的性能。

使用 serverless 上的专用产品更智能地工作

我们还借此机会为无服务器架构构建定制产品,以实现搜索、可观察性和安全性。 目的是通过简化的用户体验来优化每个工作流程的独特需求。 这包括更快、持续的入门、更紧密的功能集成以及针对每个用例的工作优化自定义界面。 每个产品的显着亮点包括:

  • 搜索 (Search):无服务器搜索体验的重点是确保开发人员能够快速、轻松地创建开箱即用的卓越搜索体验。 API 是最前沿和中心的位置,并结合了将数据引入 Elasticsearch 的简单方法。 这些管道已经过简化,可以快速完成转型和其他任务。 创建了 Java、.NET、Python 等新语言客户端,以减少初始学习曲线和完成任务所需的步骤,以及内联文档,共同创建简化的开发人员体验,帮助开发人员更快地获得价值 。

  • 可观察性 (Observability):无服务器的可观察性使站点可靠性工程师能够专注于对他们来说重要的事情 - 确保其系统和应用程序的可靠性。 实现价值的时间是一个关键原则,简化的日志登录体验可简化数据摄取流程,而机器学习/AIOps 可帮助 SRE 快速识别异常行为并快速找到根本原因。 核心组件是新的托管接收服务,它可以轻松接受、处理和索引 OpenTelemetry 和 Elastic APM 数据。 这些服务建立在多租户架构之上,可自动扩展以满足现代云原生可观测性的需求,并进行全面管理以始终确保可靠性和弹性。

  • 安全性 (Security):serverless 的安全性围绕着新的持续入门,引导用户获取安全日志、查看仪表板、启用检测规则和调查警报。 内置的 “进度跟踪器” 专为优化特定用例而定制,包括安全分析/SIEM、端点安全和云安全。 以安全为中心的导航使所有与安全相关的功能触手可及。 每个安全项目都启用了 Elastic Security 机器学习功能。 例如,基于机器学习的异常检测可用于自动检测规则或基于假设的威胁搜寻。 为所有摄取的数据提供策划和临时调查和探索。

如果你想尝试一下,请告诉我们

除了我们现有的部署选项之外,Elastic 的 serverless 架构和产品还为复杂数据和计算工作负载的未来奠定了基础,即使在大量历史数据上也能提供超快速搜索,同时提供最简单的方式来享受 Elasticsearch 的所有创新用于搜索、可观察性和安全性。 它实现了简单性、性能和规模的愿景,提供:

  • 专门构建的产品体验:使用针对搜索、安全性和可观察性进行优化的定制产品更快地工作。
  • 无忧运营:免于运营责任 - 无需管理后端基础设施、进行容量规划、升级或扩展数据。
  • 可扩展的解耦架构:自动、可靠、独立地扩展工作负载。 实时响应需求变化,最大限度减少延迟,确保最快响应。
  • 快速开发和交付:立即开始并通过快速、经济实惠的对象存储进行扩展,以长期查询数据。 通过控制来管理绩效和支出,轻松扩展。

成为我们无服务器愿景的一部分,并在其他人之前尝试一下 - 立即申请抢先体验。

本文中描述的任何特性或功能的发布和时间安排均由 Elastic 自行决定。 当前不可用的任何特性或功能可能无法按时交付或根本无法交付。

原文:Serve more with Serverless | Elastic Blog

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/224718.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

9.基于SpringBoot3+I18N实现国际化

1. 新建资源文件 在resources目录下新建目录i18n, 然后 新建messages_en.properties文件 user.login.erroraccount or password error!新建messages_zh_CN.properties文件 user.login.error帐户或密码错误!2. 新建LocaleConfig.java文件 Configurati…

gpt3、gpt2与gpt1区别

参考:深度学习:GPT1、GPT2、GPT-3_HanZee的博客-CSDN博客 Zero-shot Learning / One-shot Learning-CSDN博客 Zero-shot(零次学习)简介-CSDN博客 GPT-2 模型由多层单向transformer的解码器部分构成,本质上是自回归模型…

Hazelcast分布式内存网格(IMDG)基本使用,使用Hazelcast做分布式内存缓存

文章目录 一、Hazelcast简介1、Hazelcast概述2、Hazelcast之IMDG3、数据分区 二、Hazelcast配置1、maven坐标2、集群搭建(1)组播自动搭建 3、客户端4、集群分组5、其他配置 三、Hazelcast分布式数据结构1、IMap2、IQueue:队列3、MultiMap4、I…

MySQL和MongoDB简介以及它们之间的区别

本文主要介绍MySQL和MongoDB的简介以及它们之间的区别。 目录 MySQL简介MySQL的优缺点MySQL的应用场景MongoDB简介MongoDB的优缺点MongoDB的应用场景MySQL和MongoDB的区别 MySQL简介 MySQL是一种开源的关系型数据库管理系统,是世界上最流行的数据库之一。它支持多用…

基于Java SSM框架实现弹幕视频网站系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架实现弹幕视频网站系统演示 摘要 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,弹幕视频网站当然也不能排除在外。弹幕视频网站是以实际运用为开发背景&…

语义分割网络FCN

语义分割是一种像素级的分类,输出是与输入图像大小相同的分割图,输出图像的每个像素对应输入图像每个像素的类别,每一个像素点的灰度值都是代表当前像素点属于该类的概率。 语义分割任务需要解决的是如何把定位和分类这两个问题一起解决&…

强敌环伺:金融业信息安全威胁分析——钓鱼和恶意软件

门口的敌人:分析对金融服务的攻击 Akamai会定期针对不同行业发布互联网状态报告(SOTI),介绍相关领域最新的安全趋势和见解。最新的第8卷第3期报告主要以金融服务业为主,分析了该行业所面临的威胁和Akamai的见解。我们发…

SLAM算法与工程实践——SLAM基本库的安装与使用(1):Eigen库

SLAM算法与工程实践系列文章 下面是SLAM算法与工程实践系列文章的总链接,本人发表这个系列的文章链接均收录于此 SLAM算法与工程实践系列文章链接 下面是专栏地址: SLAM算法与工程实践系列专栏 文章目录 SLAM算法与工程实践系列文章SLAM算法与工程实践…

外包干了一个月,技术明显进步。。。。。

先说一下自己的情况,本科生生,19年通过校招进入南京某软件公司,干了接近3年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了3年的功能测试…

springcloud多环境部署打包 - maven 篇

背景 在使用 springboot 和sringcloudnacos开发项目过程中,会有多种环境切换,例如开发环境,测试环境,演示环境,生产环境等,我们通过建立多个 yml 文件结合 profiles.active 属性进行环境指定,但…

面试常问的dubbo的spi机制到底是什么?(下)

前文回顾 前一篇文章主要是讲了什么是spi机制,spi机制在java、spring中的不同实现的分析,同时也剖析了一下dubbo spi机制的实现ExtensionLoader的实现中关于实现类加载以及实现类分类的源码。 一、实现类对象构造 看实现类对象构造过程之前,先…

当使用RSA加密,从手机前端到服务器后端的请求数据存在+

将转成了空格,导致解密出错 将空格转成了

MySQL系列(二)——日志篇

一、有哪些日志 MySQL应该是我们用的最多,也算是最熟悉的数据库了。那么,MySQL中有哪些日志了,或者你知道的有哪些日志了? 首先,我们能接触到的,一般我们排查慢查询时,会去看慢查询日志。如果…

红队专题-开源资产扫描系统-ARL资产灯塔系统

ARL资产灯塔系统 安装说明问题 : 安装说明 源码地址 https://github.com/TophantTechnology/ARL https://github.com/TophantTechnology/ARL/wiki/Docker-%E7%8E%AF%E5%A2%83%E5%AE%89%E8%A3%85-ARL 安装环境 uname -a Linux VM-24-12-centos 3.10.0-1160.49.1.e…

Git多人协作(二)

个人主页:Lei宝啊 愿所有美好如期而遇 前言 上节:Git多人协作(一) 上次我们模拟了多人在一个分支上进行开发,并且是在远程直接新建的分支,而后我们本地进行拉取;本节我们将模拟多人分别在多分支上进行开发&#xf…

Azure Machine Learning - Azure OpenAI 服务使用 GPT-35-Turbo and GPT-4

通过 Azure OpenAI 服务使用 GPT-35-Turbo and GPT-4 环境准备 Azure 订阅 - 免费创建订阅已在所需的 Azure 订阅中授予对 Azure OpenAI 服务的访问权限。 目前,仅应用程序授予对此服务的访问权限。 可以填写 https://aka.ms/oai/access 处的表单来申请对 Azure Op…

网络基础入门---使用udp协议改进程序

目录标题 前言改进一:单词翻译程序准备工作transform函数的实现init_dictionary函数的实现transform函数的实现其他地方的修改测试 改进二:远程指令执行程序popenexecCommand函数实现测试 改进三:群聊程序Usr类onlineUser类adduserdelUserisO…

mixamo根动画导入UE5问题:滑铲

最近想做一个跑酷游戏,从mixamo下载滑铲动作后,出了很多动画的问题。花了两周时间,终于是把所有的问题基本上都解决了。 常见问题: 1.【动画序列】人物不移动。 2.【动画序列】人物移动朝向错误。 3.【蒙太奇】人物移动后会被拉回…

TensorRT Provider 与TensorRT Native的对比

TensorRT Provider 的优势为: TensorRT EP 可以实现与本机 TensorRT 的性能等价。使用 TensorRT EP 的好处之一是,如果模型中存在不受支持的 TensorRT 操作,就可以运行不能在本机 TensorRT 中运行的模型。这些操作将自动退回到其他 EP&#…

8051单片机的CPU组成与四个并行I/O端口

AT89S51的CPU与并行I/O端口 本文主要涉及8051的CPU组成以及并行的4个I/O端口。CPU,主要由运算器(ALU)和控制器(CU)构成;4个双向的8位并行I/O端口,分别记为P0、P1、P2和P3 文章目录 AT89S51的CPU…