面试多线程八股文十问十答第三期

面试多线程八股文十问十答第三期

作者:程序员小白条,个人博客

相信看了本文后,对你的面试是有一定帮助的!

⭐点赞⭐收藏⭐不迷路!⭐

1.介绍一下自旋锁

重量级锁竞争时,尝试获取锁的线程不会立即阻塞,可以使用自旋(默认 10 次)来进行优化,采用循环的方式去尝试获取锁

注意:

  • 自旋占用 CPU 时间,单核 CPU 自旋就是浪费时间,因为同一时刻只能运行一个线程,多核 CPU 自旋才能发挥优势
  • 自旋失败的线程会进入阻塞状态

优点:不会进入阻塞状态,减少线程上下文切换的消耗

缺点:当自旋的线程越来越多时,会不断的消耗 CPU 资源

自旋锁情况:

  • 自旋成功的情况:
  • 自旋失败的情况:

自旋锁说明:

  • 在 Java 6 之后自旋锁是自适应的,比如对象刚刚的一次自旋操作成功过,那么认为这次自旋成功的可能性会高,就多自旋几次;反之,就少自旋甚至不自旋,比较智能
  • Java 7 之后不能控制是否开启自旋功能,由 JVM 控制
//手写自旋锁
public class SpinLock {
    // 泛型装的是Thread,原子引用线程
    AtomicReference<Thread> atomicReference = new AtomicReference<>();

    public void lock() {
        Thread thread = Thread.currentThread();
        System.out.println(thread.getName() + " come in");

        //开始自旋,期望值为null,更新值是当前线程
        while (!atomicReference.compareAndSet(null, thread)) {
            Thread.sleep(1000);
            System.out.println(thread.getName() + " 正在自旋");
        }
        System.out.println(thread.getName() + " 自旋成功");
    }

    public void unlock() {
        Thread thread = Thread.currentThread();

        //线程使用完锁把引用变为null
        atomicReference.compareAndSet(thread, null);
        System.out.println(thread.getName() + " invoke unlock");
    }

    public static void main(String[] args) throws InterruptedException {
        SpinLock lock = new SpinLock();
        new Thread(() -> {
            //占有锁
            lock.lock();
            Thread.sleep(10000); 

            //释放锁
            lock.unlock();
        },"t1").start();

        // 让main线程暂停1秒,使得t1线程,先执行
        Thread.sleep(1000);

        new Thread(() -> {
            lock.lock();
            lock.unlock();
        },"t2").start();
    }
}

2.了解锁消除吗?

锁消除是指对于被检测出不可能存在竞争的共享数据的锁进行消除,这是 JVM 即时编译器的优化

锁消除主要是通过逃逸分析来支持,如果堆上的共享数据不可能逃逸出去被其它线程访问到,那么就可以把它们当成私有数据对待,也就可以将它们的锁进行消除(同步消除:JVM 逃逸分析)

逃逸分析

逃逸分析(Escape Analysis),是一种可能减少有效 Java 程序中同步负载和内存堆分配压力的跨全局函数数据流分析算法。通过逃逸分析, Java Hotspot 编译器能够分析出一个新的对象引用范围从而决定是否要将这个对象分配到堆上,逃逸分析的基本行为就是分析对象的动态作用域。

方法逃逸

当一个对象在方法里面被定义后,它可能被外部方法所引用,例如调用参数传递到其他方法中,这种称为方法逃逸。

线程逃逸

当一个对象可能被外部线程访问到,比如:赋值给其他线程中访问的实例变量,这种称为线程逃逸。

通过逃逸分析,编译器对代码的优化

如果能够证明一个对象不会逃逸到到方法外或线程外(其他线程方法或者线程无法通过任何方法访问该变量),或者逃逸程度比较低(只逃逸出方法而不逃逸出线程)则可以对这个对象采用不同程度的优化:

1、栈上分配(Stack Allocations)完全不会逃逸的局部变量和不会逃逸出线程的对象,采用栈上分配,对象就会跟随方法的结束自动销毁。以减少垃圾回收器的压力。

2、标量替换(Scalar Replacement)有个对象可能不需要作为一个连续的存储结果存储也能被访问到,那么对象的部分(或者全部)可以不存储在内存,而是存储在 CPU 寄存器中。

3、同步消除(Synchronization Elimination)如果一个对象发现只能在一个线程访问到,那么这个对象的操作可以考虑不同步。


3.锁粗化大致了解哪些?

对相同对象多次加锁,导致线程发生多次重入,频繁的加锁操作就会导致性能损耗,可以使用锁粗化方式优化

如果虚拟机探测到一串的操作都对同一个对象加锁,将会把加锁的范围扩展(粗化)到整个操作序列的外部

  • 一些看起来没有加锁的代码,其实隐式的加了很多锁:
public static String concatString(String s1, String s2, String s3) {
    return s1 + s2 + s3;
}
  • String 是一个不可变的类,编译器会对 String 的拼接自动优化。在 JDK 1.5 之前,转化为 StringBuffer 对象的连续 append() 操作,每个 append() 方法中都有一个同步块
public static String concatString(String s1, String s2, String s3) {
    StringBuffer sb = new StringBuffer();
    sb.append(s1);
    sb.append(s2);
    sb.append(s3);
    return sb.toString();
}

扩展到第一个 append() 操作之前直至最后一个 append() 操作之后,只需要加锁一次就可以

4.重量级锁会发生线程阻塞,那么阻塞之后CPU会对它进行怎样的处理?

当线程在使用重量级锁时发生阻塞,CPU 会将该线程置于一种等待状态,通常是通过操作系统的线程调度机制实现的。具体的处理方式取决于操作系统和 JVM 的实现,但一般来说,阻塞的线程会进入休眠状态,不再占用 CPU 资源,直到以下条件之一发生:

锁的拥有者线程释放锁:如果锁的拥有者线程执行完了它的同步代码块或方法,并释放了锁,等待的线程将被唤醒,有机会再次竞争锁。

超时等待:等待线程可以设置一个超时时间,如果在超时时间内锁没有被释放,线程将被唤醒,可以继续尝试获取锁或执行其他操作。

中断:等待线程可以被外部线程中断,如果发生了线程中断,等待线程也会被唤醒。

其他通知机制:有时候,等待线程可以通过其他通知机制被唤醒,如 Condition 对象的 signal() 或 signalAll() 方法。

在这个过程中,CPU 不会一直持续检查等待线程是否可以获得锁,而是通过操作系统提供的等待/唤醒机制来管理线程的状态。这有助于节省 CPU 资源,因为被阻塞的线程不会占用处理器时间,直到它有机会获得锁或被唤醒。

5.锁被释放之后,队列中阻塞线程获取锁的流程是怎么样的?

当锁被释放后,队列中的阻塞线程会竞争锁的获取。这个过程通常由操作系统的线程调度机制和 JVM 的锁实现来管理。以下是阻塞线程获取锁的典型流程:

竞争锁:一旦锁的持有者线程释放了锁,阻塞线程队列中的线程会竞争锁。操作系统的线程调度器会选择其中一个线程来执行。通常,线程的选择是非确定性的,即哪个线程会被选中是不可预测的。

锁竞争:竞争锁的线程会尝试获取锁。如果竞争成功,线程将成为锁的新持有者,可以继续执行同步代码块或方法。

如果竞争失败,线程将进入一个阻塞状态,等待重新竞争或者通过操作系统的线程调度器重新分配 CPU 时间片。

这个过程涉及到操作系统级别的线程调度和竞争,所以具体的行为会受到操作系统和 JVM 实现的影响。竞争锁时,通常会采用一些策略来提高公平性和效率。例如,有的 JVM 实现可能会采用公平锁策略,即先进入队列的线程会更有机会获得锁,以减少线程饥饿的情况。其他实现可能会采用非公平锁策略,以提高性能。

6.线程池任务提交,比如调用execute或submit API之后的流程有了解吗

注意:execute() 执行任务时,如果有异常没有被捕获会直接抛出

submit() 执行任务时,会吞并异常,除非调用get() 获取计算结果,当抛出异常时会捕获异常

Executors (内部使用AbstractExecutorService的子类DelegatedExecutorService):

执行execute(),最终是调用ThreadPoolExecutor的execute方法

执行submit(),会通过newTaskFor创建FutureTask,最终还是执行ThreadPoolExecutor的execute方法

7.Synchronized四种状态,哪些可访问系统资源?

其实就是问用户态和内核态,只有重量级锁是内核态可以访问系统资源。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/222247.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

云轴科技ZStack助力彬长矿业建设智能矿山

陕西彬长矿业集团有限公司&#xff08;简称彬长矿业&#xff09;选择云轴科技ZStack智能矿山云解决方案建设云基础设施&#xff1a;ZStackCube超融合一体机部署在西咸云基地机房构建私有云资源池&#xff0c;ZStackCMP多云管理平台对西咸云基地机房以及各矿井生产服务中心资源进…

数据结构初阶之二叉树性质练习与代码练习

个人主页&#xff1a;点我进入主页 专栏分类&#xff1a;C语言初阶 C语言程序设计————KTV C语言小游戏 C语言进阶 C语言刷题 数据结构初阶 Linux 欢迎大家点赞&#xff0c;评论&#xff0c;收藏。 一起努力,共赴大厂。 目录 1.前言 2.性质练习 3…

实验报告-实验四(时序系统实验)

软件模拟电路图 说明 SW&#xff1a;开关&#xff0c;共六个Q1~Q3&#xff1a;输出Y0~Y3&#xff1a;输出 74LS194 首先&#xff0c;要给S1和S0高电位&#xff0c;将A~D的数据存入寄存器中&#xff08;如果开始没有存入数据&#xff0c;那么就是0000在里面移位&#xff0c;不…

mvc模式test

项目结构 Book.java package beans; public class Book {private Integer id;private String name;private double price;public Integer getId() {return id;}public void setId(Integer id) {this.id id;}public String getName() {return name;}public void setName(Strin…

跨端的三种方案原理和对比(WebView,ReactNative,Flutter)

一、定义 WebView WebView是什么&#xff1f; 答&#xff1a; 第一代跨平台框架&#xff0c;代表者为&#xff1a;PhoneGap、微信小程序。 WebView标签是一种用于在网页中嵌入浏览器窗口的HTML元素。它的底层原理是通过原生平台提供的浏览器引擎来实现网页的渲染和交互。 …

虚拟人如何在线下活动实现实时交互?动捕设备或为最优解

随着时代的进步&#xff0c;虚拟人凭借其打破时空界限、新颖差异化视觉效果等特点&#xff0c;在发布会、峰会等线下活动中发挥着重要作用&#xff0c;想要实现虚拟人在线下活动中实时交互&#xff0c;使用动捕设备可以让虚拟人化身虚拟主持人、虚拟主播、虚拟舞者演员等。 虚拟…

Octave安装与教程

Octave是一种编程语言&#xff0c;旨在解决线性和非线性的数值计算问题。Octave为GNU项目下的开源软件&#xff0c;早期版本为命令行交互方式&#xff0c;4.0.0版本发布基于QT编写的GUI交互界面。Octave语法与Matlab语法非常接近&#xff0c;可以很容易的将matlab程序移植到Oct…

mysql pxc高可用离线部署(三)

pxc学习流程 mysql pxc高可用 单主机 多主机部署&#xff08;一&#xff09; mysql pxc 高可用多主机离线部署&#xff08;二&#xff09; mysql pxc高可用离线部署&#xff08;三&#xff09; mysql pxc高可用 跨主机部署pxc 本文使用docker进行安装&#xff0c;主机间通过…

leetcode:LCR 122. 路径加密(python3解法)

难度&#xff1a;简单 假定一段路径记作字符串 path&#xff0c;其中以 "." 作为分隔符。现需将路径加密&#xff0c;加密方法为将 path 中的分隔符替换为空格 " "&#xff0c;请返回加密后的字符串。 示例 1&#xff1a; 输入&#xff1a;path "a.a…

Cmake时遇到Could Not find CURL问题

操作系统&#xff1a;Ubuntu 20.04 cmake编译的时候&#xff0c;出现下述错误Could Not find CURL。 结合上述错误&#xff0c;又去看了CMakelist文件&#xff0c;看到CURL的最小版本需要7.28.0。 首先确认一下自己的curl是否安装&#xff0c;版本号是多少&#xff0c;结果如下…

【Spring Boot 】Spring Boot 常用配置总结

文章目录 前言1.多环境配置application.propertiesapplication.yaml 2.常用配置3.配置读取4.自定义配置 前言 在涉及项目开发时&#xff0c;通常我们会灵活地把一些配置项集中在一起&#xff0c;如果你的项目不是很大的情况下&#xff0c;那么通过配置文件集中不失为一个很好的…

Linux(ubuntu)利用ffmpeg+qt设计rtsp_rtmp流媒体播放器(完全从0开始搭建环境进行开发)

一、前言 从0开始搭建Linux下Qt、ffmpeg开发环境。 从安装虚拟机开始、安装Linux(Ubuntu)系统、安装Qt开发环境、编译ffmpeg源码、配置ffmpeg环境、编写ffmpeg项目代码、完成项目开发。 完全从0开始搭建环境进行开发 完全从0开始搭建环境进行开发 完全从0开始搭建环境进行开…

ROS 静态坐标转换

在 ROS 中&#xff0c;坐标变换&#xff08;TF&#xff1a;Transform&#xff09;它允许机器人系统中的各个部分使用不同的坐标系&#xff0c;并通过转换关系进行通信和协作。 静态坐标变换是指两个坐标系之间的相对位置关系是固定的&#xff0c;不会随时间改变。 例如&#…

Elasticsearch 入门(postman学习)-01

HTTP-索引-创建 对比关系型数据库&#xff0c;创建索引就等同于创建数据库。 在 Postman 中&#xff0c;向 ES 服务器发 PUT 请求 &#xff1a; http://127.0.0.1:9200/shopping 请求后&#xff0c;服务器返回响应&#xff1a; {"acknowledged": true,//响应结果&…

信息化,数字化,智能化是3种不同概念吗?与机械化,自动化矛盾吗?

先说结论&#xff1a; 1、信息化、数字化、智能化确实是3种不同的概念&#xff01; 2、这3种概念与机械化、自动化并不矛盾&#xff0c;它们是制造业中不同发展阶段和不同层次的概念。 机械化&#xff1a;是指在生产过程中使用机械技术来辅助人工完成一些重复性、单一性、劳…

条件概率公式、全概率公式、贝叶斯公式

条件概率公式 设A、B为两个事件&#xff0c;为事件A发生的概率&#xff0c;为事件A和B同时发生的概率&#xff0c;并且&#xff0c;那么 称为A事件发生的条件下事件B发生的条件概率。 全概率公式 其中&#xff0c;A为一个事件&#xff0c;为样本空间的一个划分。 公式表达的…

binder线程安全即读取线程池部分剖析

背景 hi,粉丝朋友们&#xff1a; 大家好&#xff01;近期有学员在学习binder过程中向我提出了2个疑问&#xff1a; 1、binder是否线程安全的&#xff0c;即同一个binder的服务端方法是不是同一个时间点&#xff0c;只有一个执行者&#xff1f; 2、binder的读取线程是怎么启动的…

RetsCloud AppLink适用的场景有哪些?

Applink是什么产品&#xff1f; AppLink是一款由RestCloud公司推出的超级应用连接器。无需开发&#xff0c;零代码&#xff0c;即可快速打通应用系统之间的数据。通过流程搭建&#xff0c;可以智能、高效地完成自动化任务&#xff0c;在大大提高工作效率的同时&#xff0c;也降…

状态设计模式

package com.jmj.pattern.state.after;public abstract class LiftState {protected Context context;public void setContext(Context context) {this.context context;}//电梯开启操作public abstract void open();//电梯关闭操作public abstract void close();//电梯运行操…

SystemWeaver—电子电气系统协同研发平台

背景概述 当前电子电气系统在汽车领域应用广泛&#xff0c;其设计整合了多门工程学科&#xff0c;也因系统的复杂性、关联性日益提升&#xff0c;需要其提供面向软件、硬件、网络、电气等多领域交织而导致的复杂系统解决方案。并且随着功能安全、AUTOSAR、SOA、以太网通讯等新要…