深度学习在单线性回归方程中的应用--TensorFlow实战详解

深度学习在单线性回归方程中的应用–TensorFlow实战详解

文章目录

  • 深度学习在单线性回归方程中的应用--TensorFlow实战详解
    • 1、人工智能<-->机器学习<-->深度学习
    • 2、线性回归方程
    • 3、TensorFlow实战解决单线性回归问题
      • 人工数据集生成
      • 构建模型
      • 训练模型
      • 定义损失函数
      • 定义优化器
      • 创建会话
      • 迭代训练
      • 训练结果
      • 打印参数和预测值
    • 4、完整代码demo

提到人工智能,绕不开的话题就是机器学习了,因为机器学习是人工智能很重要的一个分支。而今天要讨论的深度学习又是机器学习的一个很重要的分支。

目前的主流深度学习框架有

  • TensorFlow
  • Keras
  • Theano

1、人工智能<–>机器学习<–>深度学习

其实机器学习就是让机器自己学习的算法,我们需要训练出这个算法,在利用这个算法解决一些问题。机器学习和人工智能的关系就是,机器学习是技术,人工智能是概念,机器学习技术用来解决人工智能出现的问题。

显而易见的说,机器学习就是训练如下的一个模型,用这个模型解决问题,那么如何训练呢?那就是通过历史数据来训练。

img

深度学习是机器学习的一个子集,深度学习是利用深度的神经网络,将模型处理得更为复杂,从而使模型对数据的理解更加深入。

img

2、线性回归方程

首先要知道线性回归的概念,所谓回归是指:回归事物的本质和真相。线性是指通过一个已知条件x得到预测值y。我们中学学过的y=kx放在坐标系里讨论,就是一条直线,我们称其为:线性的。

所以线性回归方程我们可以抽象成如下:

img

它的图象可以表示为:

img

线性回归有一个特点就是,我们事先知道一个方程,然后代入x因变量,就可以得到y的值,只要我们知道这个方程,那么我们就掌握了预测未来的可能。在深度学习中,我们将x点成为 特征,将得到的y成为标签,而一堆特征我们称为 样本

那么我们对一个模型的训练过程就如下图:

img

机器学习要做的事情是:先给你一些点,也就是数据集,我们通过这个数据集训练出一个方程,也就是一个模型,然后再用这个模型去预测未来。

3、TensorFlow实战解决单线性回归问题

首先我们要知道利用深度学习算法训练一个模型的核心步骤:

  • 准备数据集
  • 构建模型
  • 训练模型
  • 进行预测

我们这里选用了TensorFlow框架进行训练。

单变量线性回归方程可以表示如下:

img

人工数据集生成

现在的已知条件是,我们有一堆点在这里,然后我们希望通过这些点找到上面的回归方程,这个回归方程就是我们说的模型,这个找方程的过程叫做:模型训练。方程找到了,也就是计算出了w和b了,那么我们就可以通过这个模型预测未知的y值了。

img

这些点我们可以通过随机生成人工数据集,为了让这些点均匀分布,不会分布在一条线上,我们还要加上噪音振幅。

# 图象实现
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import tensorflow.compat.v1 as tf
#关闭Eager Execution
tf.compat.v1.disable_eager_execution()
#设置随机数种子
np.random.seed(5)

然后生成100个点,每个点的取值在-1,1之间

x_data=np.linspace(-1,1,100)
# y=2x+1+噪声
y_data=2*x_data+1.0+np.random.randn(*x_data.shape)*0.4

利用matplotlib画出结果

# 画出随机数生成的散点图
plt.scatter(x_data,y_data)
# 画出我们的目标,也就是希望得到的函数y=2*x+1
plt.plot(x_data,2*x_data+1.0,color='red',linewidth=3)

img

我们画出这个图想要说明的是,当前选用的数据集点生成模型是可行的,因为点和我们期待生成的那个函数是可以拟合的,大致相似的。

构建模型

模型结构如下:

x=tf.placeholder("float",name="x")
y=tf.placeholder("float",name="y")
# 定义模型函数
def model(x,w,b):
    return tf.multiply(x,w)+b

w=tf.Variable(1.0,name="w0")
b=tf.Variable(0.0,name="b0")
pred=model(x,w,b)#预测值的计算

训练模型

设置训练参数,在这里 learn_rate学习率和迭代次数 train_epochs超参量参数,也就是我们在训练一个模型的时候必须自己人工定义的参数,通过这种参数去让模型更好的拟合,达到我们希望的效果。我们常说调参调参就是指这个。

#迭代次数
train_epochs=10
#学习率
learn_rate=0.05

定义损失函数

损失函数的作用是指导模型收敛的方向,他表示描述预测值和真实值之间的误差,是一个数。

常见的损失函数有:

  • L1损失函数
  • l2损失函数
  • 均方误差MSE

这里我们使用MSE均方差损失函数。所谓均方差损失函数就是每个点的y值减掉预测的y值在进行平方,然后把这些点的平方都加起来,最后加和结果除以总的点个数。专业的解释是:每个样本的平均平方损失

img

# 采用均方差作为损失函数
loss_function=tf.reduce_mean(tf.square(y-pred))

定义优化器

我们定义优化器的目的是减少模型的损失,使得损失最小化。我们在优化器 Optimzer中会通过 learn_rate学习率和 loss_function损失函数 来优化收敛我们的模型。我们在讨论损失函数的时候,我们希望损失最小,那么我们就要求出损失函数的最小值。怎么求呢?我们需要用到 梯度下降算法

# 梯度下降优化器
optimizer=tf.train.GradientDescentOptimizer(learn_rate).minimize(loss_function)

如何理解梯度下降呢?首先需要知道这个东西是为了降低损失的,降低损失函数的值

梯度下降法的基本思想可以类比为一个下山的过程,如下图所示函数看似为一片山林,红色的是山林的高点,蓝色的为山林的低点,蓝色的颜色越深,地理位置越低,则图中有一个低点,一个最低点。

img

假设这样一个场景:一个人被困在山上(图中红圈的位置),需要从山上下来(找到山的最低点,也就是山谷),但此时山上的浓雾很大,导致可视度很低。因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,他就可以利用梯度下降算法来帮助自己下山。具体来说就是,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着山的高度下降的方向走,然后每走一段距离,都反复采用同一个方法,最后就能成功的抵达山谷。

img

假设这座山最陡峭的地方是无法通过肉眼立马观察出来的,而是需要一个复杂的工具来测量,同时,这个人此时正好拥有测量出最陡峭方向的工具。所以,此人每走一段距离,都需要一段时间来测量所在位置最陡峭的方向,这是比较耗时的。那么为了在太阳下山之前到达山底,就要尽可能的减少测量方向的次数。这是一个两难的选择,如果测量的频繁,可以保证下山的方向是绝对正确的,但又非常耗时,如果测量的过少,又有偏离轨道的风险。所以需要找到一个合适的测量方向的频率(多久测量一次),来确保下山的方向不错误,同时又不至于耗时太多,在算法中我们成为步长

在这里我们将步长称为 学习率,也就是上面代码中的 learn_rate。学习率不能过大过小,需要我们根据经验设置,过大过小都会导致模型拟合过度。

我们说一个点什么时候梯度最小?也就是说什么时候损失函数最小?

如下图我们对点进行求导,它的导数从数学的角度来说表示斜率,也就是斜线的陡峭程度,这个斜率的值其实就是我们说的梯度。斜线的方向就是我们说的梯度方向。

img

如下图,当点的斜率为0的时候,也就是梯度为0了,这个时候我们说这个模型的损失最小,模型最为拟合。

img

其实我们上面定义的优化器 GradientDescentOptimizer(learn_rate).minimize(loss_function)已经帮我们干了上面所有的事情,它直接通过我们设置好的步长学习率和损失函数,将我们的模型损失降到了最低,也就是上面这张图所需要的效果。

创建会话

sess=tf.Session()
# 所有变量初始化
init=tf.global_variables_initializer()
sess.run(init)

迭代训练

在模型训练阶段,设置多轮迭代,每次通过将样本逐个输入模型,进行梯度下降优化操作,每轮迭代以后,绘制出迭代曲线

# epoch就是训练轮数,这里为10
for epoch in range(train_epochs):
    for xs,ys in zip(x_data,y_data):
        _,loss=sess.run([optimizer,loss_function],feed_dict={x:xs,y:ys})#核心
    b0temp=b.eval(session=sess)
    w0temp=w.eval(session=sess)
    plt.plot(x_data,w0temp*x_data+b0temp)

训练结果

img

从图中可以得到,这个模型在训练3次以后就接近拟合的状态了。

打印参数和预测值

print("w:",sess.run(w))
print("b:",sess.run(b))
x_test=3.21 #这是预测值
predict=sess.run(pred,feed_dict={x:x_test})
print("预测值:%f" % predict)
target=2*x_test+1.0
print("目标值:%f" % target)

img

4、完整代码demo

环境:

  • Anaconda
  • Jupyter
  • Python3.5.2
  • TensorFlow2.0
%matplotlib inline

import matplotlib.pyplot as plt
import numpy as np
import tensorflow.compat.v1 as tf
tf.compat.v1.disable_eager_execution()

np.random.seed(5)

x_data=np.linspace(-1,1,100)
y_data=2*x_data+1.0+np.random.randn(*x_data.shape)*0.4
plt.scatter(x_data,y_data)
plt.plot(x_data,2*x_data+1.0,color='red',linewidth=3)

x=tf.placeholder("float",name="x")
y=tf.placeholder("float",name="y")
def model(x,w,b):
    return tf.multiply(x,w)+b

w=tf.Variable(1.0,name="w0")
b=tf.Variable(0.0,name="b0")
pred=model(x,w,b)

#设置迭代次数和学习率、损失函数
train_epochs=10
learn_rate=0.05
loss_function=tf.reduce_mean(tf.square(y-pred))

optimizer=tf.train.GradientDescentOptimizer(learn_rate).minimize(loss_function)

sess=tf.Session()

init=tf.global_variables_initializer()

sess.run(init)

for epoch in range(train_epochs):
    for xs,ys in zip(x_data,y_data):
        _,loss=sess.run([optimizer,loss_function],feed_dict={x:xs,y:ys})
    b0temp=b.eval(session=sess)
    w0temp=w.eval(session=sess)
    plt.plot(x_data,w0temp*x_data+b0temp)
    
print("w:",sess.run(w))
print("b:",sess.run(b))

x_test=3.21
predict=sess.run(pred,feed_dict={x:x_test})
print("预测值:%f" % predict)

target=2*x_test+1.0
print("目标值:%f" % target)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/222188.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

bpftrace原理与使用方法

Bpftrace 概念和原理bpftrace安装bpftrace 语法结构bpftrace 变量内置变量自定义变量Map变量 内置函数Bpftrace操作案例文件系统磁盘进程内存 bpftrace是一种基于eBPF&#xff08;Extended Berkeley Packet Filter&#xff09;的跟踪工具&#xff0c;用于在Linux系统中进行动态…

金山终端安全系统V9.0 update_software_info_v2.php处SQL注入漏洞复现 [附POC]

文章目录 金山终端安全系统V9.0 update_software_info_v2.php处SQL注入漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 0x06 修复建议参考链接&#xff1a; 金山终端安全系统V9.0 update_software_info_v2.php处…

国产麒麟操作系统部署记录

前提&#xff1a;部署项目首先要安装各种软件&#xff0c;在内网环境下无法在线下载。 思路&#xff1a;首先部署一台能上网的系统&#xff0c;在此系统下只下载包&#xff0c;然后传到另一台内网系统下进行安装&#xff1b; 1、最开始yum未安装&#xff0c;因此需要先安装yu…

Leetcode每日一题学习训练——Python3版(到达首都的最少油耗)

版本说明 当前版本号[20231205]。 版本修改说明20231205初版 目录 文章目录 版本说明目录到达首都的最少油耗理解题目代码思路参考代码 原题可以点击此 2477. 到达首都的最少油耗 前去练习。 到达首都的最少油耗 ​ 给你一棵 n 个节点的树&#xff08;一个无向、连通、无环…

7nm项目之顶层规划——01数据导入

1.创建workspace 创建workspace后&#xff0c;在其目录下产生。 CORTEXA53.json文件是将有默认配置的文件master.json、有library的.config.json文件、tunes下CORTEXA53.tunes.json文件合并 注&#xff1a;tunes下的CORTEXA53.tunes.json文件可以覆盖一些master.json的设置…

企业定制CRM系统:不可忽视的关键功能

虽然市场上有许多成熟的CRM系统供企业选择&#xff0c;但是市场上现有的标准化CRM系统可能无法满足那些有着独特需求的企业。企业想要拥有适合自身业务的CRM系统就需要进行CRM系统定制。那么&#xff0c;企业如何定制CRM系统要注意哪些功能&#xff1f; 一、为什么企业需要CRM…

23款奔驰GLC260L升级原厂360全景影像 超广角的视野

360全景影像影像系统提升行车时的便利&#xff0c;不管是新手或是老司机都将是一个不错的配置&#xff0c;无论是在倒车&#xff0c;挪车以及拐弯转角的时候都能及时关注车辆所处的环境状况&#xff0c;避免盲区事故发生&#xff0c;提升行车出入安全性。 360全景影像包含&…

synchronized关键字-监视器锁(monitor lock)

这就是我们上一篇中代码提到的加锁的主要方式,本质上是调用系统api进行加锁,系统api本质是靠cpu特定指令加锁. synchronize的特性 互斥性 synchronized会起到互斥效果,某个线程执行到某个对象的synchronized中时,,其它线程如果也执行到同一个对象synchronized就会阻塞等待(锁…

什么是可靠性测试,常见的可靠性测试标准有哪些?

1、可靠性试验背景介绍 为了测定、验证或提高产品可靠性而进行的试验称为可靠性试验&#xff0c;它是产品可靠性工作的一个重要环节。 2、通常&#xff0c;对产品进行可靠性试验的目的如下&#xff1a; (1)在研制阶段使产品达到预定的可靠性指标。为了使产品能达到预定的可靠性…

Python绘图坐标轴数字要求三位分节的处理方法

比如说1000&#xff0c;用三位分节法的写法就是1 000&#xff0c;咱们操作的时候可以先式化字符串&#xff0c;用千位分隔符表示数字就是1,000&#xff0c;再把逗号换成空格。 import matplotlib.pyplot as plt import matplotlib.ticker as ticker# 示例数据 x [1000, 2000, …

品牌要随时监测电商价格现实吗

电商渠道中的价格信息如果存在低价&#xff0c;那需要及时治理&#xff0c;否则低价会蔓延开来&#xff0c;影响渠道的发展&#xff0c;所以在治理前的监测工作非常重要&#xff0c;监测越全面&#xff0c;越准确&#xff0c;品牌进行渠道管控时会更有方向感&#xff0c;治理成…

Lattice-Based Blind Signatures: Short, Efficient, and Round-Optimal

目录 笔记后续的创新方向摘要引言 Lattice-Based Blind Signatures: Short, Efficient, and Round-Optimal CCS 2023 笔记 该文档提出了一种基于格子密码学的2轮盲签名协议。该协议是四舍五入最优的&#xff0c;签名大小为 22 KB&#xff0c;使其比其他基于格的方案更短。该文…

竞赛活动过程中评委亮灯是如何实现的

选秀节目中用到的那种评委爆灯效果要通过软件和硬件一起实现&#xff0c;软件实现在新一轮开始时&#xff0c;统一灭灯&#xff0c;评委通过按钮触发软件打开相应的灯&#xff0c;并自动发出声音。其实用到的物料包括&#xff1a;软件、按钮、灯、工业控制器。软件是核心&#…

Python Tkinter库入门与基础

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com Tkinter是Python标准库中内置的图形用户界面&#xff08;GUI&#xff09;工具包&#xff0c;提供了创建窗口、按钮、文本框等GUI元素的功能。本文将介绍Tkinter的基础知识&#xff0c;帮助大家快速入门。 安装与…

制作古风纹理的滕王阁3D模型

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 滕王阁&#xff0c;位于江西省南昌市东湖区沿江路&#xff0c;地处赣…

PDM是什么?解析:PDM的基础知识

PDM是什么&#xff1f; PDM的中文名称为产品数据管理&#xff08;Product Data Management&#xff09;&#xff0c;它是一门用来管理所有与产品相关信息&#xff08;包括零件信息、配置、文档、CAD文件、结构、权限信息等&#xff09;和所有与产品相关过程&#xff08;包括过程…

HarmonyOS学习--初次下载安装和配置环境

一、Windows下载与安装软件 运行环境要求&#xff1a; 为保证DevEco Studio正常运行&#xff0c;建议电脑配置满足如下要求&#xff1a; 操作系统&#xff1a;Windows10 64位、Windows11 64位内存&#xff1a;8GB及以上硬盘&#xff1a;100GB及以上分辨率&#xff1a;1280*80…

智能优化算法应用:基于类电磁机制算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于类电磁机制算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于类电磁机制算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.类电磁机制算法4.实验参数设定5.算法结果…

【C】递归函数

一、什么是递归 递归其实是⼀种解决问题的⽅法&#xff0c;在C语⾔中&#xff0c;递归就是函数⾃⼰调⽤⾃⼰。 我们先了解一个知识&#xff1a; 每一次函数调用&#xff0c;都会向内存栈区上申请一块空间。 这块空间主要用来存放函数中的局部变量&#xff0c;和函数调用过程中…

不同角度范围下四元数转欧拉角的方式

前言 在标定过程中求出的欧拉角与预设真值差距太大&#xff0c;检查中发现求出的角度与真值角度都可以将车辆坐标系变换到相机坐标系。后通过查阅文献&#xff0c;发现四元数对应的欧拉角并不唯一&#xff0c;在不同的条件下可求出不同的欧拉角&#xff0c;实际应用中需根据实…